Abstract:
Embodiments herein describe a network device (e.g., an access point) that dynamically arranges multi-user (MU) multiple input multiple output (MIMO) compatible client devices into MU-MIMO groups. That is, the network device uses network metrics and historical data to change the assignment of client devices in the MU-MIMO groups which may improve MU-MIMO efficiency by reducing the amount of power that leaks between the clients devices in the group. In one embodiment, the AP identifies a MU-MIMO group based on a performance evaluation such as evaluating network metric or determining if the group is underutilized. The AP can replace the identified MU-MIMO group with a substitute MU-MIMO group where the substitute MU-MIMO group is selected based on historical data corresponding to the client devices assigned to the substitute MU-MIMO group.
Abstract:
Noise floor degradation detection may be provided. First, an incremental packet loss rate for a secondary radio may be calculated that indicates an impact on packet reception on the secondary radio due to transmissions by a primary radio. The secondary radio and the primary radio may comprise an access point. Next, it may be determined that the incremental packet loss rate is greater than a predetermined value. A configuration of the access point may be changed in response to determining that the incremental packet loss rate is greater than the predetermined value.
Abstract:
A method is provided in which a first wireless access point selects two or more of a plurality of client devices based on similarity of receive signal strength and carrier frequency offset with respect to the first wireless access point, and sends a downlink multi-user multiple-input multiple-output (MIMO) transmission to the two or more client devices. The downlink multi-user MIMO transmission is configured to solicit acknowledgments from the two or more client devices. The acknowledgments are received at a plurality of antennas of the first wireless access point from the two or more client devices. Uplink multi-user MIMO processing of the acknowledgments is performed from the two or more of the plurality of client devices to recover the acknowledgments respectively from each of the two or more client devices.
Abstract:
An apparatus comprises an antenna array, a block of switches, a programmable logic device and a memory device. The antenna array comprises a plurality of antenna elements. The block of switches is configured to selectively connect respective ones of a subset of the plurality of antenna elements to corresponding ones of a plurality of transceivers in a host device. The programmable logic device is configured to communicate with the host device and to control the block of switches. The memory device is coupled to the programmable logic device, and is configured to store information allowing the host device to determine how to control connectivity of individual antenna elements to respective ones of the plurality of transceivers of the host device as part of transmit and/or receive operations of the host device.
Abstract:
A system and method are provided for performing stomp-and-restart techniques in distributed MU-MIMO system. A plurality of radio head devices are provided that are configured to be deployed separated from each other in a coverage region of interest of a wireless network. A central processor subsystem is provided that is in communication with the plurality of radio head devices. The central processor subsystem configured to perform several operations based on downconverted samples received from the plurality of radio head devices.
Abstract:
A plurality of time slots are allocated during which a location procedure is performed for one or more target wireless devices. Select ones of a plurality of wireless access points at different positions are assigned to each time slot such that multiple wireless access points assigned to a given time slot are sufficiently separated. In addition, wireless access points are assigned to a corresponding one of a plurality of groups for each time slot such that wireless access points assigned to a group tune to a channel used by a wireless access point in the group that transmits one or more frames that are intended to provoke one or more response frames from the one or more wireless devices.
Abstract:
Apparatus and techniques are presented for estimating a noise floor experienced by a client device seeking to associate with an access point in a wireless network. A path loss between the client device and the access point may be estimated. A metric may then be generated, where the metric estimates a strength of a signal transmitted from the access point as received at the client device. The transmit power at the access point may then be adjusted, based on the metric.
Abstract:
Access points and a wireless client device, such as a workgroup bridge, are configured to optimize a roaming algorithm of the client device for a high-speed vehicle scenario, such as a high-speed train. A static/dynamic neighbor list is generated and used to improve scanning efficiency. An improved parent access point selection procedure, metrics, and thresholds are provided to optimize client roaming along the vehicle's path, e.g., the train track.
Abstract:
Techniques are presented for distributed processing Distributed-Input Distributed-Output (DIDO) wireless communication. A plurality of base stations (e.g., APs) are provided, each configured to wirelessly serve one or more wireless devices (e.g., clients). At least first and second base stations are configured to transmit simultaneously at an agreed upon time. The first and second base stations are each configured to locally generate steering matrix information used to spatially precode their respective data transmissions in order to steer their respective data transmissions to their one or more wireless devices while nulling to the one or more client devices of the other base station. Moreover, the first and second base stations are each configured to locally generate a transmit waveform by applying the steering matrix information to their respective data transmissions.
Abstract:
In a wireless local are network, each of multiple access points, in a high density deployment, are configured to suppress co-channel interference. A first access point having a plurality of antennas beamforms a transmission to a wireless client device within a null-space or with the weakest singular eigenmodes of a wireless channel between the first access point and at least one co-channel second access point. Techniques are presented herein for situations in which any given access point has two or more co-channel access points. In addition, an access point may perform receive side suppression with respect to a transmission (made by a co-channel access point to one of its associated wireless client devices) that is received from that co-channel access point.