Abstract:
A method is provided in one example embodiment and includes receiving at a first network node a request to obtain data from a second network node, wherein the first and second network nodes are connected via n access networks; partitioning the request into n subrequests proportionally based on relative throughputs of the n access networks; and transmitting each of the n subrequests to the second network node via a respective one of the n access networks.
Abstract:
In one embodiment, a method comprises obtaining, by a client device via a wireless data link with a wireless access point, information from a network device within a data network reachable via the wireless access point, the information describing network conditions associated with a service provided to the client device via the data network; and the client device optimizing a transmission control protocol (TCP) communication, via the wireless data link, for optimization of the service provided by the client device.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.
Abstract:
An example method for facilitating on-demand bandwidth provisioning in a network environment is provided and includes receiving a request from a client at a first network for accommodating flow characteristics at a second network that is associated with executing an application at the first network, determining that the request cannot be fulfilled with available network resources allocated to the client by the second network, advising the client of additional cost for accommodating the flow characteristics, and authorizing additional network resources in the second network to accommodate the flow characteristics after receiving notification from the client of payment of the additional cost.
Abstract:
An example method for access network capacity monitoring and planning based on flow characteristics in a network environment is provided and includes receiving, at a server in a first network, a request from a client at a second network for accommodating flow characteristics for a flow through the first network between the client and a remote destination, accommodating the flow characteristics if the request can be fulfilled with available network resources allocated to the client by the first network, measuring the flow at the first network between the client and the remote destination, exporting flow details including flow measurements and the requested flow characteristics to a flow collector, and denying the request if the flow collector determines that the flow measurements do not match the requested flow characteristics. In some embodiments, the flow measurements include fine-grain flow measurements, wherein the method further comprises receiving a request for the fine-grain flow measurements.
Abstract:
A STUN message is received at a router device in a network from a client device in the network along a network path. The STUN message is evaluated for information that indicates to the router device to modify media that is subsequently sent along the network path. If the evaluating indicates that the router device is to modify the media, the media is modified in accordance with information in the STUN message that indicates attributes of the network.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.
Abstract:
In one embodiment, a system and method include determining bandwidth of a link that connects a local modem to a remote router. A first percentage of the bandwidth is assigned to a first class of data and a second percentage of bandwidth is assigned to a second class of data. The remaining percentage of the bandwidth is assigned for nominal excess capacity. The flow of first class of data and second class of data are controlled to below respective percentages of the bandwidth.
Abstract:
In one embodiment, a system and method include determining bandwidth of a link that connects a local modem to a remote router. A first percentage of the bandwidth is assigned to a first class of data and a second percentage of bandwidth is assigned to a second class of data. The remaining percentage of the bandwidth is assigned for nominal excess capacity. The flow of first class of data and second class of data are controlled to below respective percentages of the bandwidth.