Abstract:
A tiltrotor aircraft includes a fuselage; a wing member having a first rib, a second rib, a first spar, second spar; and an upper wing skin; an engine disposed at a fixed location relative to the wing member; and a proprotor having a spindle gearbox, rotor mast, and a plurality of rotor blades drivable in rotation about the rotor mast, the spindle gearbox being rotatable about a conversion axis. The spindle gearbox is located above the upper wing skin of the wing member.
Abstract:
A method of the present disclosure includes of repairing a core stiffened structure with structural foam. Another method includes splicing core members together using structural foam. Another method includes joining a core member to a structure using structural foam. Another method includes using structural foam to stabilize a core member during a machining process. Another method includes stabilizing a core member with structural foam to prevent the core member from crushing in autoclave pressure. The present disclosure further includes a core stiffened structure have a core member with structural foam therein.
Abstract:
An airfoil member can have a root end, a tip end, a leading edge, and a trailing edge. The airfoil member can include an upper skin, a lower skin, and a composite core member having a plurality of cells, an upper surface network of the cells can be bonded to the upper skin, a lower surface network of the cells can be bonded to the lower skin. The composite core can have a septum layer embedded in the cells that form the composite core, the septum layer being configured to provide tailored characteristics of the airfoil member.
Abstract:
An erosion protection system (EPS) has a first erosion protection unit (EPU) having a first ligament and a first scale attached to the first ligament, the first scale having an outer hardness that is greater than a hardness of the first ligament. The EPS also has a second EPU having a second ligament and a second scale attached to the second ligament, the second scale having an outer hardness that is greater than a hardness of the second ligament. The EPS also has an interstitial space between the first ligament and the second ligament wherein at least one of (1) the first scale overlaps at least a portion of the second EPU and (2) the second scale overlaps at least a portion of the first EPU.
Abstract:
A method of performing structural analysis relating to a component having CAD-based geometry, refined CAD-based geometry and CAD-based FEA data associated therewith. The method includes scanning the component to obtain scan-based point cloud geometry of the component, aligning the scan-based point cloud geometry with the CAD-based geometry of the component, generating scan-based geometry of the component by refining the scan-based point cloud geometry, comparing the scan-based geometry with the refined CAD-based geometry of the component to quantify geometric differences therebetween, generating scan-based FEA geometry of the component by meshing the scan-based geometry, performing finite element analysis on the scan-based FEA geometry to obtain scan-based FEA data and comparing the scan-based FEA data with the CAD-based FEA data of the component to quantify the effect of geometric difference therebetween.
Abstract:
In one aspect, there is a method of making a composite skin for a tiltrotor aircraft including providing a first skin in a mold, the first skin having a periphery defined by a forward edge, an aft edge, and outboard ends; providing a plurality of honeycomb panels having an array of large cells onto the first skin, each cell having a width of at least 1 cm; assembling the plurality of honeycomb panels along the longitudinal axis of the first skin to form a honeycomb core having an outer perimeter within the periphery of the first skin; positioning a second skin onto the honeycomb core, the second skin having an outer perimeter within the periphery of the first skin; and curing an adhesive to create a bond between the first skin, the honeycomb core, and the second skin to form a composite skin.
Abstract:
A method of the present disclosure includes of repairing a core stiffened structure with structural foam. Another method includes splicing core members together using structural foam. Another method includes joining a core member to a structure using structural foam. Another method includes using structural foam to stabilize a core member during a machining process. Another method includes stabilizing a core member with structural foam to prevent the core member from crushing in autoclave pressure. The present disclosure further includes a core stiffened structure have a core member with structural foam therein.
Abstract:
A method of the present disclosure includes of repairing a core stiffened structure with structural foam. Another method includes splicing core members together using structural foam. Another method includes joining a core member to a structure using structural foam. Another method includes using structural foam to stabilize a core member during a machining process. Another method includes stabilizing a core member with structural foam to prevent the core member from crushing in autoclave pressure. The present disclosure further includes a core stiffened structure have a core member with structural foam therein.