Abstract:
In a first aspect, there is a method of making a specimen with a predetermined wrinkle defect, the steps including orienting a composite material around a layup tool at a wrap angle to form a closed loop; and generating at least one wrinkle with a predetermined characteristic in a portion of the closed loop to form a specimen. The predetermined characteristic is at least one of the following: wrinkle location, an outward wrinkle, an inward wrinkle, a wrinkle width, a wrinkle height, and a wrinkle length. In another aspect, there is a method of determining allowable defects for a composite component.
Abstract:
In a first aspect, there is a method of making a specimen with a predetermined wrinkle defect, the steps including orienting a composite material around a layup tool at a wrap angle to form a closed loop; and generating at least one wrinkle with a predetermined characteristic in a portion of the closed loop to form a specimen. The predetermined characteristic is at least one of the following: wrinkle location, an outward wrinkle, an inward wrinkle, a wrinkle width, a wrinkle height, and a wrinkle length. In another aspect, there is a method of determining allowable defects for a composite component.
Abstract:
An airfoil member can have a root end, a tip end, a leading edge, and a trailing edge. The airfoil member can include an upper skin, a lower skin, and a composite core member having a plurality of cells, an upper surface network of the cells can be bonded to the upper skin, a lower surface network of the cells can be bonded to the lower skin. The composite core can have a septum layer embedded in the cells that form the composite core, the septum layer being configured to provide tailored characteristics of the airfoil member.
Abstract:
A method is provided in one example embodiment and may include forming a ply stack on a tool, the ply stack comprising a plurality of plies; compacting the ply stack; and heating the ply stack during the compacting to form a composite structure, wherein the heating is caused by an electromagnetic inductive device or a radiative device. Compacting the ply stack can include encapsulating the ply stack within a bag and increasing a vacuum within the bag to increase external pressure on the bag and the ply stack.
Abstract:
There is a method of making a tubular specimen with a predetermined wrinkle defect including providing a layup tool with a cavity forming member having a cavity which resembles a desired shape of the at least one wrinkle; orienting a composite material around the mandrel at a wrap angle to form a closed loop; positioning a wrinkle tool on the closed loop; and/or generating at least one wrinkle with a predetermined characteristic in a portion of the closed loop to form a tubular specimen. The predetermined characteristic is at least one of the following: wrinkle location, an outward wrinkle, an inward wrinkle, a wrinkle width, a wrinkle height, and a wrinkle length. In another aspect, there is a method of offset load testing a tubular composite specimen. In a third aspect, there is a method of determining allowable defects for a composite component.
Abstract:
There is a method of making a tubular specimen with a predetermined wrinkle defect including providing a layup tool with a cavity forming member having a cavity which resembles a desired shape of the at least one wrinkle; orienting a composite material around the mandrel at a wrap angle to form a closed loop; positioning a wrinkle tool on the closed loop; and/or generating at least one wrinkle with a predetermined characteristic in a portion of the closed loop to form a tubular specimen. The predetermined characteristic is at least one of the following: wrinkle location, an outward wrinkle, an inward wrinkle, a wrinkle width, a wrinkle height, and a wrinkle length. In another aspect, there is a method of offset load testing a tubular composite specimen. In a third aspect, there is a method of determining allowable defects for a composite component.
Abstract:
An airfoil member can have a root end, a tip end, a leading edge, and a trailing edge. The airfoil member can include an upper skin, a lower skin, and a composite core member having a plurality of cells, an upper surface network of the cells can be bonded to the upper skin, a lower surface network of the cells can be bonded to the lower skin. The composite core can have a septum layer embedded in the cells that form the composite core, the septum layer being configured to provide tailored characteristics of the airfoil member.