Abstract:
An array substrate, a manufacturing method thereof and a display device are provided. The array substrate includes: a base substrate, a reflection region layered structure and a reflection electrode. The base substrate includes a pixel region, the pixel region includes a reflection region. The reflection region layered structure is in the reflection region, and includes a particle layer, the particle layer is configured to provide a granular rough surface on a side of the reflection region layered structure facing away from the base substrate. The reflection electrode is on the particle layer.
Abstract:
Embodiments of the present invention discloses a touch-controlled panel and a method of manufacturing the same, and a display device, to reduce the number of masks and production cost. The method of manufacturing a touch-controlled panel includes: forming a first electrode and a second electrode on a substrate through a patterning process, the first electrode and the second electrode being broken at a position where they are overlapped; depositing a layer of an organic film and forming an organic film fully remained region, an organic film partially remained region and an organic film removed region from the organic film through a mask; depositing a conductive layer and coating a photoresist on the conductive layer, and then forming a photoresist fully remained region, a photoresist partially remained region and a photoresist removed region through the mask.
Abstract:
The embodiment of the present application discloses an array substrate, a liquid crystal display panel, and a display device, with first common electrode compensation lines being arranged within pixel regions which correspond to pixels provided with a minimal transmittance, by which first common electrode compensation lines a common electrode is charged so as to ensure a constant voltage on the common electrode. Moreover, since the first common electrode compensation lines are configured to overlap neither first signal lines nor second signal lines, a repairmen of the first signal lines or the second signal lines will not be adversely affected in case that there is short-circuit or open-circuit thereon. Besides, since the common electrode compensation lines are arranged within pixel regions provided with the lowest transmittance, the influence onto overall transmittance of the display panel is minimized relatively.
Abstract:
Embodiments of the present invention discloses a touch-controlled panel and a method of manufacturing the same, and a display device, to reduce the number of masks and production cost. The method of manufacturing a touch-controlled panel includes: forming a first electrode and a second electrode on a substrate through a patterning process, the first electrode and the second electrode being broken at a position where they are overlapped; depositing a layer of an organic film and forming an organic film fully remained region, an organic film partially remained region and an organic film removed region from the organic film through a mask; depositing a conductive layer and coating a photoresist on the conductive layer, and then forming a photoresist fully remained region, a photoresist partially remained region and a photoresist removed region through the mask.
Abstract:
Embodiments of the present disclosure provide a thin film transistor (TFT) and a method of manufacturing the same, which enables to decrease the vertical resistance from the source and the drain to the polarity inversion region, so that the current from the source and the drain to the polarity inversion region may be increased, thereby improving the performances of the TFT. An active layer of the TFT is provided with a first groove and a second groove which neither pass through the active layer. A source and a drain of the TFT are formed at least partially in the first groove and the second groove, respectively. The source and the drain contact the active layer through the first groove and the second groove, respectively.
Abstract:
An array substrate of a liquid crystal display, comprising: a substrate; a first electrode disposed on the substrate; a second electrode located above and electrically insulated from the first electrode; and an orientation film disposed on the second electrode, wherein the array substrate further comprising: at least one shunt electrode connected to at least one of first electrodes to divert residual charges left over a surface of a liquid crystal molecule, and the shunt electrode is located at a side of the orientation film not contacting the liquid crystal molecule.
Abstract:
An array substrate, a manufacturing method thereof, and a display panel are provided. The array substrate comprises a base substrate, a plurality of gate lines and gate electrodes on the base substrate, each gate electrode being corresponding to and separate from a respective gate line, a gate insulating layer over the gate electrode and the gate line, the gate insulating layer having a first via hole and a second via hole, the first via hole exposing the gate electrode, the second via hole exposing the gate line, a conductive connection layer and a polysilicon semiconductor layer on the gate insulating layer, the conductive connection layer filling the first via hole and the second via hole to connect the gate line with the gate electrode.
Abstract:
The present disclosure provides an array substrate and a manufacturing method of the array substrate, a display device. An array substrate comprises: a pixel array, each pixel in the pixel array having a pixel electrode; a transistor array, each transistor in the transistor array having a source electrode; and a connection electrode for electrically connecting the pixel electrode to a corresponding source electrode.
Abstract:
The present application provides a thin film transistor (TFT) and a method of fabricating the same, a display substrate and a method of fabricating the same, and a display device. The TFT includes a substrate, and a source electrode, a drain electrode and an active layer on the substrate. The active layer includes first and second active layers, the first active layer has a carrier mobility greater than that of the second active layer, and the second active layer is closer to the source electrode and the drain electrode than the first active layer. An orthographic projection of the source electrode on the substrate and an orthographic projection of the drain electrode on the substrate at least partially overlap with an orthographic projection of the second active layer on the substrate, respectively, and the first active layer is separated from the source electrode and the drain electrode.
Abstract:
A display substrate and a display apparatus are provided. The display substrate includes a film layer and a blocking structure. The film layer includes a via surrounded by the blocking structure. The blocking structure is at an edge of the via.