Abstract:
An electrowetting display device may comprise pixels that include: a hydrophobic layer portion disposed on a first electrode, electrowetting fluids overlying the hydrophobic layer portion, and a thin film transistor (TFT) that is in electrical contact with the first electrode. The electrowetting display device also comprises a display control circuit in electrical contact with a drain or a source of the TFT of each of the pixels to provide a drive voltage to the drain or the source of the TFT of each of the pixels, and a reset control circuit in electrical contact with the drain or the source of the TFT of each of the pixels to provide a reset voltage pulse to the drain or the source of the TFT of each of the pixels. A magnitude of the reset voltage pulse may be based, at least in part, on the drive voltage.
Abstract:
A method of controlling an electrowetting display device with display elements arranged in a matrix with n rows. In examples each display element is addressable with a voltage pulse having a pulse duration longer than Tf/n, where Tf is a pre-determined frame period for addressing the n rows. In examples the pulse duration may be longer than ReCe, with Re being an electrical resistance of an electrically conductive fluid of a display element and Ce being an electrical capacitance of a capacitor of the display element.
Abstract:
A method of controlling an electrowetting display device with display elements arranged in a matrix with n rows. In examples each display element is addressable with a voltage pulse having a pulse duration longer than Tf/n, where Tf is a pre-determined frame period for addressing the n rows. In examples the pulse duration may be longer than ReCe, with Re being an electrical resistance of an electrically conductive fluid of a display element and Ce being an electrical capacitance of a capacitor of the display element.
Abstract:
An electrowetting display comprises a support plate on which individual electrowetting pixels separated from one another by pixel walls are formed. The individual electrowetting pixels include a first conductive layer and a second conductive layer on the support plate. The first conductive layer and the second conductive layer are separated by a dielectric layer in first portions of the individual electrowetting pixels. The first conductive layer and the second conductive layer are in electrical contact with one another in second portions of the individual electrowetting pixels, wherein the second portions of the individual electrowetting pixels may be U-shaped.
Abstract:
An electrowetting display device including an electrowetting element with a first support plate, a second support plate, a first fluid and a second fluid immiscible with the first fluid. A voltage may be applied between a first electrode and a second electrode. At least one of the first electrode and the second electrode comprises a semiconducting material.