Abstract:
A power adapter for a peripheral device such as portable electronics device is disclosed. The power adapter includes a housing that contains electrical components associated with the power adapter. The power adapter also includes a data port provided at a surface of the housing. The data port is configured to provide external power to the peripheral device.
Abstract:
This invention is directed to an electronic device with an embedded authentication system for restricting access to device resources. The authentication system may include one or more sensors operative to detect biometric information of a user. The sensors may be positioned in the device such that the sensors may detect appropriate biometric information as the user operates the device, without requiring the user to perform a step for providing the biometric information (e.g., embedding a fingerprint sensor in an input mechanism instead of providing a fingerprint sensor in a separate part of the device housing). In some embodiments, the authentication system may be operative to detect a visual or temporal pattern of inputs to authenticate a user. In response to authenticating, a user may access restricted files, applications (e.g., applications purchased by the user), or settings (e.g., application settings such as contacts or saved game profile).
Abstract:
A personal display system with which a user may adjust the configuration of displayed media is provided. The personal display system may include an electronic device operative to provide media to a personal display device operative to display the received media. Using one or more optical and digital components, the personal display device may adjust displayed media to overlay features of a theater, thus giving the user of the personal display device the impression of being in the theater. In some embodiments, the personal display device may receive a user selection of a seat in the theater from which to watch the media, and may adjust the media display accordingly. In some embodiments, the personal display device may detect the user's movements using one or more sensors and may adjust the displayed image based on the user's movements. For example, the device may detect a user's head movement and cause the portion of media displayed to reflect the head movement.
Abstract:
A graphical user interface (“GUI”) can be presented on a remote control accessory device that has user input and display devices. The GUI can be defined and managed by a portable media device that is controlled using the GUI. The portable media device can provide the accessory with a GUI image to be displayed. The accessory can send information to the portable media device indicative of a user operation of an input device in response to the displayed image. The portable media device can process this input to identify the action requested by the user and take the appropriate action, which can include updating the GUI image provided to the accessory.
Abstract:
Access to a communications network may be provided via a data provider that may charge for access. In some cases, the access fee may be related to the amount of network resources consumed (e.g., amount of data downloaded or bandwidth used). In some cases, a user may have access to a particular amount of data provider resources and be required to pay an additional fee for using resources in excess of the particular amount. To assist the user in managing his data resource consumption, a resource utilization component may provide different alerts and notices informing the user of current consumption, expected future consumption, and recommendations for reducing data provider resources consumed (e.g., stopping particular processes or data provider requests, such as downloading media). If several electronic devices in a network are connected to the same data provider resources, a network component may manage the data provider resource use among the several electronic devices (e.g., allow only particular users or devices access).
Abstract:
The various methods and devices described herein relate to devices which, in at least certain embodiments, may include one or more sensors for providing data relating to user activity and at least one processor for causing the device to respond based on the user activity which was determined, at least in part, through the sensors. The response by the device may include a change of state of the device, and the response may be automatically performed after the user activity is determined.
Abstract:
An improved portable media device and methods for operating a media device are disclosed. According to one aspect, the portable media device can also function as a solid-state drive for data storage. The form factor of the portable media device can be hand-held or smaller, such that it is highly portable. The portable media device can use one or more status indicators. The portable media device can also include a peripheral bus connector, a rechargeable battery, and one or more input devices. According to another aspect, the portable media device has the capability to store media device status information in persistent memory before powering down. Thereafter, when the portable media device is again powered up, the stored media player status information can be retrieved and utilized. According to still another aspect, the portable media device can form and/or traverse a media asset playlist in an efficient manner.
Abstract:
A personal display system with which a user may adjust the configuration of displayed media is provided. The personal display system may include an electronic device operative to provide media to a personal display device operative to display the received media. Using one or more optical and digital components, the personal display device may adjust displayed media to overlay features of a theater, thus giving the user of the personal display device the impression of being in the theater. In some embodiments, the personal display device may receive a user selection of a seat in the theater from which to watch the media, and may adjust the media display accordingly. In some embodiments, the personal display device may detect the user's movements using one or more sensors and may adjust the displayed image based on the user's movements. For example, the device may detect a user's head movement and cause the portion of media displayed to reflect the head movement.
Abstract:
Proximity based systems and methods that are implemented on an electronic device are disclosed. The method includes sensing an object spaced away and in close proximity to the electronic device. The method also includes performing an action in the electronic device when an object is sensed.
Abstract:
Improved techniques to control utilization of accessory devices with electronic devices are disclosed. The improved techniques can use cryptographic approaches to authenticate electronic devices, namely, electronic devices that interconnect and communicate with one another. One aspect pertains to techniques for authenticating an electronic device, such as an accessory device. Another aspect pertains to provisioning software features (e.g., functions) by or for an electronic device (e.g., a host device). Different electronic devices can, for example, be provisioned differently depending on different degrees or levels of authentication, or depending on manufacturer or product basis. Still another aspect pertains to using an accessory (or adapter) to convert a peripheral device (e.g., USB device) into a host device (e.g., USB host). The improved techniques are particularly well suited for electronic devices, such as media devices, that can receive accessory devices. One example of a media device is a media player, such as a hand-held media player (e.g., music player), that can present (e.g., play) media items (or media assets).