Semiconductor light emitting device and method for manufacturing the same
    31.
    发明授权
    Semiconductor light emitting device and method for manufacturing the same 有权
    半导体发光器件及其制造方法

    公开(公告)号:US08835954B2

    公开(公告)日:2014-09-16

    申请号:US13221326

    申请日:2011-08-30

    Abstract: According to one embodiment, a semiconductor light emitting device includes a structure including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes an electrode layer provided on the second semiconductor layer side of the structure. The electrode layer includes a metal portion with a thickness of not less than 10 nanometers and not more than 100 nanometers. A plurality of openings pierces the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers. The device includes an inorganic film providing on the metal portion and inner surfaces of the openings, the inorganic film having transmittivity with respect to light emitted from the light emitting layer.

    Abstract translation: 根据一个实施例,半导体发光器件包括包括第一导电类型的第一半导体层,第二导电类型的第二半导体层和设置在第一半导体层和第二半导体层之间的发光层的结构。 该器件还包括设置在该结构的第二半导体层侧上的电极层。 电极层包括厚度不小于10纳米且不大于100纳米的金属部分。 多个开口刺穿金属部分,每个开口具有不小于10纳米且不大于5微米的等效圆直径。 所述装置包括在所述金属部分和所述开口的内表面上提供的无机膜,所述无机膜相对于从所述发光层发射的光具有透射率。

    Light-transmitting metal electrode and process for production thereof
    32.
    发明授权
    Light-transmitting metal electrode and process for production thereof 有权
    透光金属电极及其制造方法

    公开(公告)号:US08686459B2

    公开(公告)日:2014-04-01

    申请号:US12236132

    申请日:2008-09-23

    Abstract: The present invention provides a light-transmitting metal electrode including a substrate and a metal electrode layer having plural openings. The metal electrode layer also has such a continuous metal part that any pair of point-positions in the part is continuously connected without breaks. The openings in the metal electrode layer are periodically arranged to form plural microdomains. The plural microdomains are so placed that the in-plane arranging directions thereof are oriented independently of each other. The thickness of the metal electrode layer is in the range of 10 to 200 nm.

    Abstract translation: 本发明提供一种透光性金属电极,其具有基板和具有多个开口部的金属电极层。 金属电极层还具有这样的连续的金属部分,即零件中的任何一个点位置连续连接而不断裂。 周期性地布置金属电极层中的开口以形成多个微区域。 多个微区被放置成使得其面内排列方向彼此独立地取向。 金属电极层的厚度在10〜200nm的范围内。

    Optically transmissive metal electrode, electronic device, and optical device
    33.
    发明授权
    Optically transmissive metal electrode, electronic device, and optical device 有权
    光学透射金属电极,电子器件和光学器件

    公开(公告)号:US08450824B2

    公开(公告)日:2013-05-28

    申请号:US13405935

    申请日:2012-02-27

    CPC classification number: H01L31/022425 H01L33/38 H01L33/42 Y02E10/50

    Abstract: According to one embodiment, an optically transmissive metal electrode includes a plurality of first and second metal wires. The first metal wires are disposed along a first direction, and extend along a second direction intersecting the first direction. The second metal wires are disposed along a third direction parallel with a plane including the first and second directions and intersecting the first direction, contact the first metal wires, and extend along a fourth direction parallel with the plane and intersecting the third direction. A first pitch between centers of the first metal wires is not more than a shortest wavelength in a waveband including visible light. A second pitch between centers of the second metal wires exceeds a longest wavelength in the waveband. A thickness of the first and second metal wires along a direction vertical to the plane is not more than the shortest wavelength.

    Abstract translation: 根据一个实施例,透光金属电极包括多个第一和第二金属线。 第一金属线沿着第一方向设置,并且沿着与第一方向相交的第二方向延伸。 第二金属线沿着与包括第一和第二方向的平面平行的第三方向设置并且与第一方向相交,与第一金属线接触,并且沿与平面平行并与第三方向相交的第四方向延伸。 第一金属线的中心之间的第一间距在包括可见光的波段中不超过最短波长。 第二金属线的中心之间的第二间距在波段中超过最长波长。 第一和第二金属线沿垂直于该平面的方向的厚度不大于最短波长。

    OPTICALLY TRANSMISSIVE METAL ELECTRODE, ELECTRONIC DEVICE, AND OPTICAL DEVICE
    34.
    发明申请
    OPTICALLY TRANSMISSIVE METAL ELECTRODE, ELECTRONIC DEVICE, AND OPTICAL DEVICE 有权
    光传输金属电极,电子器件和光学器件

    公开(公告)号:US20130075762A1

    公开(公告)日:2013-03-28

    申请号:US13405935

    申请日:2012-02-27

    CPC classification number: H01L31/022425 H01L33/38 H01L33/42 Y02E10/50

    Abstract: According to one embodiment, an optically transmissive metal electrode includes a plurality of first and second metal wires. The first metal wires are disposed along a first direction, and extend along a second direction intersecting the first direction. The second metal wires are disposed along a third direction parallel with a plane including the first and second directions and intersecting the first direction, contact the first metal wires, and extend along a fourth direction parallel with the plane and intersecting the third direction. A first pitch between centers of the first metal wires is not more than a shortest wavelength in a waveband including visible light. A second pitch between centers of the second metal wires exceeds a longest wavelength in the waveband. A thickness of the first and second metal wires along a direction vertical to the plane is not more than the shortest wavelength.

    Abstract translation: 根据一个实施例,透光金属电极包括多个第一和第二金属线。 第一金属线沿着第一方向设置,并且沿着与第一方向相交的第二方向延伸。 第二金属线沿着与包括第一和第二方向的平面平行的第三方向设置并且与第一方向相交,与第一金属线接触,并且沿与平面平行并与第三方向相交的第四方向延伸。 第一金属线的中心之间的第一间距在包括可见光的波段中不超过最短波长。 第二金属线的中心之间的第二间距在波段中超过最长波长。 第一和第二金属线沿垂直于该平面的方向的厚度不大于最短波长。

    Antireflection structure formation method and antireflection structure
    35.
    发明授权
    Antireflection structure formation method and antireflection structure 有权
    抗反射结构形成方法和抗反射结构

    公开(公告)号:US08361339B2

    公开(公告)日:2013-01-29

    申请号:US12347187

    申请日:2008-12-31

    Abstract: The present invention provides such a formation method that an antireflection structure having excellent antireflection functions can be formed in a large area and at small cost. Further, the present invention also provides an antireflection structure formed by that method. In the formation method, a base layer and particles placed thereon are subjected to an etching process. The particles on the base layer serve as an etching mask in the process, and hence they are more durable against etching than the base layer. The etching rate ratio of the base layer to the particles is more than 1 but not more than 5. The etching process is stopped before the particles disappear. It is also possible to produce an antireflection structure by nanoimprinting method employing a stamper. The stamper is formed by use of a master plate produced according to the above formation method.

    Abstract translation: 本发明提供这样一种形成方法,即可以大面积且成本低的方式形成具有优异的抗反射功能的抗反射结构。 此外,本发明还提供了通过该方法形成的抗反射结构。 在形成方法中,对基底层和放置在其上的颗粒进行蚀刻处理。 基层上的颗粒在该过程中用作蚀刻掩模,因此它们比基层更耐腐蚀。 基层与颗粒的蚀刻速率比大于1但不大于5.蚀刻过程在颗粒消失之前停止。 也可以通过使用压模的纳米压印方法制造抗反射结构。 通过使用根据上述形成方法制造的母版形成压模。

    SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND PROCESS FOR PRODUCTION THEREOF
    36.
    发明申请
    SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND PROCESS FOR PRODUCTION THEREOF 失效
    半导体发光元件及其生产工艺

    公开(公告)号:US20120091499A1

    公开(公告)日:2012-04-19

    申请号:US13335984

    申请日:2011-12-23

    CPC classification number: H01L33/38 H01L2933/0091

    Abstract: The present invention provides a semiconductor light-emitting element comprising an electrode part excellent in ohmic contact and capable of emitting light from the whole surface. An electrode layer placed on the light-extraction side comprises a metal part and plural openings. The metal part is so continuous that any pair of point-positions in the part is continuously connected without breaks, and the metal part in 95% or more of the whole area continues linearly without breaks by the openings in a straight distance of not more than ⅓ of the wavelength of light emitted from an active layer. The average opening diameter is of 10 nm to ⅓ of the wavelength of emitted light. The electrode layer has a thickness of 10 nm to 200 nm, and is in good ohmic contact with a semiconductor layer.

    Abstract translation: 本发明提供一种半导体发光元件,其包括欧姆接触性优异且能够从整个表面发光的电极部。 放置在光提取侧的电极层包括金属部分和多个开口。 金属部分是连续的,使得零件中的任何一个点位置连续连接而不断裂,并且整个区域的95%或更多的金属部分线性地继续而不断开,直线距离不大于 从有源层发射的光的1/3。 平均开口直径为发射光波长的10nm至1/3。 电极层的厚度为10nm〜200nm,与半导体层良好的欧姆接触。

    PHOTOELECTRIC CONVERSION ELEMENT
    37.
    发明申请
    PHOTOELECTRIC CONVERSION ELEMENT 审中-公开
    光电转换元件

    公开(公告)号:US20120073651A1

    公开(公告)日:2012-03-29

    申请号:US13228754

    申请日:2011-09-09

    Abstract: A photoelectric conversion element according to an embodiments includes: a first metal layer; a semiconductor layer formed on the first metal layer; a second metal layer formed on the semiconductor layer, the second metal layer comprising a porous thin film with a plurality of openings each having a mean area not smaller than 80 nm2 and not larger than 0.8 μm2 or miniature structures having a mean volume not smaller than 4 nm3 and not larger than 0.52 μm3; and a wavelength converting layer formed between the semiconductor layer and the second metal layer, at least a refractive index of a portion of the wavelength converting layer being lower than a refractive index of a material of the semiconductor layer, the portion being at a distance of 5 nm or shorter from an end portion of the second metal layer.

    Abstract translation: 根据实施例的光电转换元件包括:第一金属层; 形成在所述第一金属层上的半导体层; 形成在所述半导体层上的第二金属层,所述第二金属层包括具有多个开口的多孔薄膜,每个开口的平均面积不小于80nm 2且不大于0.8μm2,或平均体积不小于 4nm3且不大于0.52μm3; 以及形成在所述半导体层和所述第二金属层之间的波长转换层,所述波长转换层的一部分的折射率的至少折射率低于所述半导体层的材料的折射率,所述部分距离 距第二金属层的端部为5nm以下。

    SPIN-POLARIZED ELECTRON SOURCE
    38.
    发明申请
    SPIN-POLARIZED ELECTRON SOURCE 有权
    旋转极化电子源

    公开(公告)号:US20110089397A1

    公开(公告)日:2011-04-21

    申请号:US12736270

    申请日:2009-03-24

    Abstract: To provide implement a spin-polarized electron generating device having high spin polarization and high external quantum efficiency while allowing a certain degree of freedom in selecting materials of a substrate, a buffer layer, and a strained superlattice layer.In a spin-polarized electron generating device having a substrate, a buffer layer, and a strained superlattice layer formed on the buffer layer, an intermediate layer formed of a crystal having a lattice constant greater than that of a crystal used to form the buffer layer intervenes between the substrate and the buffer layer. With this arrangement, tensile strain causes cracks to be formed in the buffer layer in a direction perpendicular to the substrate, whereby the buffer layer has mosaic-like appearance. As a result, glide dislocations in an oblique direction do not propagate to the strained superlattice layer to be grown on the buffer layer, thereby improving crystallinity of the strained superlattice layer. Accordingly, spin polarization of excited electrons and external quantum efficiency of polarized electrons improve.

    Abstract translation: 为了提供具有高自旋极化和高外部量子效率的自旋极化电子发生器件,同时在选择衬底,缓冲层和应变超晶格层的材料方面具有一定的自由度。 在具有形成在缓冲层上的衬底,缓冲层和应变超晶格层的自旋极化电子发生器件中,由晶格常数大于用于形成缓冲层的晶体的晶格常数的晶体形成的中间层 介于衬底和缓冲层之间。 通过这种布置,拉伸应变使得缓冲层中的垂直于基板的方向形成裂纹,由此缓冲层具有马赛克状外观。 结果,倾斜方向的滑移位错不会传播到在缓冲层上生长的应变超晶格层,从而提高应变超晶格层的结晶度。 因此,激发电子的自旋极化和极化电子的外部量子效率提高。

    THIN FILM SOLAR CELL AND METHOD FOR PRODUCING THE SAME
    39.
    发明申请
    THIN FILM SOLAR CELL AND METHOD FOR PRODUCING THE SAME 审中-公开
    薄膜太阳能电池及其制造方法

    公开(公告)号:US20100236620A1

    公开(公告)日:2010-09-23

    申请号:US12706338

    申请日:2010-02-16

    CPC classification number: H01L31/1884 H01L31/022433 H01L31/075 Y02E10/548

    Abstract: According to one aspect of the present invention, there is provided a thin film solar cell comprising a substrate, a photoelectric conversion layer formed on said substrate, said photoelectric conversion layer having a thickness of 1 μm or less, and said photoelectric conversion layer comprising a p-type semiconductor layer, an n-type semiconductor layer, and are i-type semiconductor layer placed between said p-type semiconductor layer and said n-type semiconductor layer, a light-incident side electrode layer formed on a light-incident surface of said photoelectric conversion layer and a counter electrode layer formed on the surface opposite to the light-incident surface. Said light-incident side electrode layer has plural openings bored though said layer, and the thickness thereof is in the range of 10 nm to 200 nm. Each of said openings occupies an area of 80 nm2 to 0.8 μm2. The opening ratio is in the range of 10% to 66%.

    Abstract translation: 根据本发明的一个方面,提供了一种薄膜太阳能电池,其包括基板,形成在所述基板上的光电转换层,所述光电转换层的厚度为1μm以下,所述光电转换层包括 p型半导体层,n型半导体层,并且是位于所述p型半导体层和所述n型半导体层之间的i型半导体层,形成在光入射表面上的光入射侧电极层 的所述光电转换层和形成在与所述光入射表面相对的表面上的对电极层。 所述光入射侧电极层具有贯穿所述层的多个开口,其厚度在10nm至200nm的范围内。 每个所述开口占据80nm 2至0.8μm2的面积。 开口率在10%至66%的范围内。

    Method for arranging particles and method for manufacturing light-emitting device
    40.
    发明授权
    Method for arranging particles and method for manufacturing light-emitting device 有权
    颗粒的排列方法和制造发光装置的方法

    公开(公告)号:US07776196B2

    公开(公告)日:2010-08-17

    申请号:US11687709

    申请日:2007-03-19

    Abstract: A method for arranging particles according to one aspect of the present invention comprises the steps of: forming a thin film on a surface of a substrate, the thin film being obtained by dispersing first particles made of metal in a material, a surface of the material is to be charged to a first polarity in a predetermined solution; dispersing second particles in the solution, the second particles being charged to a second polarity opposite to the first polarity; immersing the thin film in the solution; and irradiating the thin film with light having a wavelength which causes plasmon resonance with surface plasmons of the metal particles.

    Abstract translation: 根据本发明的一个方面的用于排列颗粒的方法包括以下步骤:在基材的表面上形成薄膜,所述薄膜通过将金属制成的第一颗粒分散在材料中,所述材料的表面 在预定的解决方案中被充电到第一极性; 将第二颗粒分散在溶液中,将第二颗粒充电至与第一极性相反的第二极性; 将薄膜浸入溶液中; 并且用具有导致与金属颗粒的表面等离子体激元等离子体共振的波长的光照射该薄膜。

Patent Agency Ranking