Abstract:
An object location monitoring system includes beacons that are spatially distributed throughout an area to be monitored. The beacons transmit interrogation signals that are received and echoed by transponders that attach to moveable objects. Each beacon retransmits its interrogation signal, and any transponder response thereto, to a receiver that measures a time difference between the two signals. This time difference reflects the signal propagation time, and thus the distance, between the beacon and the transponder. One such receiver preferably analyzes the retransmitted signals of multiple (e.g., 50 to 100) beacons. A triangulation method is used to determine the location of each transponder based on the transponder's distances from a set of beacons. In one embodiment, the transponders are provided as or within disposable ID bracelets worn by patients, and are used to track the locations of the patients within a hospital.
Abstract:
A system for controlling movement of a personal mobility vehicle near a restricted region is disclosed. In one embodiment, the system includes a detector that is configured to be disposed on the personal mobility vehicle and that is configured to receive an electromagnetic signal transmitted to the restricted region. The system also includes a control unit configured to communicate with the detector. The control unit is further configured to determine proximity of the detector to the restricted region using information related to the signal received by the detector. The control unit is also configured to provide a command to inhibit movement of the personal mobility vehicle in response to the determined proximity of the vehicle to the restricted region.
Abstract:
A vehicle tracking system includes a wheel containing sensor circuitry capable of sensing various types of conditions, such as wheel rotation, wheel vibration caused by skidding, and specific electromagnetic and/or magnetic signals indicative of particular wheel locations. The sensor circuitry is coupled to an RF transceiver, which may but need not be included within the wheel. The wheel may also include a brake mechanism. In one embodiment, the wheels are placed on shopping carts and are used to collect and monitor shopping cart status and location data via a wireless network. The collected data may be used for various purposes, such as locking the wheel of an exiting cart if the customer has not paid, estimating numbers of queued carts, stopping wheel skid events that occur during mechanized cart retrieval, store planning, and providing location-based messaging to customers.
Abstract:
A system for controlling movement of a personal mobility vehicle near a restricted region is disclosed. In one embodiment, the system includes a detector that is configured to be disposed on the personal mobility vehicle and that is configured to receive an electromagnetic signal transmitted to the restricted region. The system also includes a control unit configured to communicate with the detector. The control unit is further configured to determine proximity of the detector to the restricted region using information related to the signal received by the detector. The control unit is also configured to provide a command to inhibit movement of the personal mobility vehicle in response to the determined proximity of the vehicle to the restricted region.
Abstract:
A system is disclosed for tracking and controlling shopping carts or other types of human-propelled vehicles. In one embodiment, the system includes a wheel or wheel assembly with a braking mechanism that is activated in response to signals received by multiple receivers. The receivers may, for example, include a VLF (Very Low Frequency) receiver for detecting a VLF signal transmitted by a buried cable, and an RF transceiver for communicating over a wireless network. The receivers may, but need not, be included in the wheel. The multiple receivers may be used in combination to control a shopping cart; for example, a command received by a shopping cart's RF transceiver may cause the cart to ignore (not activate the brake in response to) a detected VLF signal.
Abstract:
A vehicle tracking system includes a wheel containing sensor circuitry capable of sensing various types of conditions, such as wheel rotation, wheel vibration caused by skidding, and specific electromagnetic and/or magnetic signals indicative of particular wheel locations. The sensor circuitry is coupled to an RF transceiver, which may but need not be included within the wheel. The wheel may also include a brake mechanism. In one embodiment, the wheels are placed on shopping carts and are used to collect and monitor shopping cart status and location data via a wireless network. The collected data may be used for various purposes, such as locking the wheel of an exiting cart if the customer has not paid, estimating numbers of queued carts, stopping wheel skid events that occur during mechanized cart retrieval, store planning, and providing location-based messaging to customers.
Abstract:
Various designs and features of an ambulatory transceiver and ECG lead set are disclosed for use in remote patient monitoring. One feature involves the use of unshielded, dual-conductor lead wires in which one conductor carries the patient's ECG signal and the other conductor provides an RF antenna element for the transceiver. The lead wires used in one embodiment provide improved flexibility, durability, and antenna performance over conventional lead sets with shielded wires. Another feature involves an antenna diversity scheme in which the transceiver switches between two or more ECG-lead antennas, each of which is formed from one or more ECG leads of the lead set. Another feature involves the use of a circuit within the transceiver to monitor, and dynamically compensate for changes in, the impedance of an ECG-lead antenna or a conductor thereof. Another feature is an improved circuit for protecting the transceiver from damage caused by defibrillation pulses.