Abstract:
A method for etching features into an etch layer disposed below a photoresist mask without an intermediate hardmask is provided. A plurality of etch cycles are provided. Each etch cycle comprises providing a deposition etch phase that etches features into the etch layer and deposits polymer on sidewalls of the features and over the photoresist and providing a cleaning phase that removes polymer deposited on the sidewalls.
Abstract:
A method for etching a dielectric layer over a substrate is provided. A photoresist mask is formed over the dielectric layer. The substrate is placed in a plasma processing chamber. An etchant gas comprising NF3 is provided into the plasma chamber. A plasma is formed from the NF3 gas. The dielectric layer is etched through the photoresist mask with the plasma from the NF3 gas.
Abstract:
A method for etching features into an etch layer disposed below a photoresist mask without an intermediate hardmask is provided. A plurality of etch cycles are provided. Each etch cycle comprises providing a deposition etch phase that etches features into the etch layer and deposits polymer on sidewalls of the features and over the photoresist and providing a cleaning phase that removes polymer deposited on the sidewalls.
Abstract:
A feature in a layer is provided. A photoresist layer is formed over the layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls, where the photoresist features have a first critical dimension. A conformal layer is deposited over the sidewalls of the photoresist features to reduce the critical dimensions of the photoresist features. Features are etched into the layer, wherein the layer features have a second critical dimension, which is less than the first critical dimension.
Abstract:
A method for forming a feature in an etch layer is provided. A photoresist layer is formed over the etch layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls. A control layer is formed over the photoresist layer and bottoms of the photoresist features. A conformal layer is deposited over the sidewalls of the photoresist features and control layer to reduce the critical dimensions of the photoresist features. Openings in the control layer are opened with a control layer breakthrough chemistry. Features are etched into the etch layer with an etch chemistry, which is different from the control layer break through chemistry, wherein the control layer is more etch resistant to the etch with the etch chemistry than the conformal layer.
Abstract:
Provided are a washing method and washing machine. In the washing method, an eco-rinsing process where a drum rotates in a state where at least a portion of laundry is pressed against the inner wall of the drum and wash water is sprayed into the drum is performed. A spinning process where the spraying of the wash water is stopped and the wash water is removed from the laundry by accelerating the drum is performed. Here, at least a portion of the laundry remains pressed against the wall of the drum in the eco-rinsing process and the spinning process.
Abstract:
Provided is a method for washing laundry in a washing machine, wherein the washing machine includes a tub and a drum disposed inside the tub, the method comprising: supplying wash water into the tub; rotating the drum such that the laundry is attached the drum and spraying the wash water changed to whirling water into the drum; and draining the wash water from the tub.
Abstract:
Provided is a washing machine. The washing machine includes a cabinet, a drum, and a whirling nozzle. The cabinet defines the exterior. The drum is provided in the cabinet, and rotates with laundry held therein. The whirling nozzle changes wash water into whirling water to spray the whirling water into the drum.
Abstract:
A method for depositing a conformal film on a substrate in a plasma processing chamber of a plasma processing system, the substrate being disposed on a chuck, the chuck being coupled to a cooling apparatus, is disclosed. The method includes flowing a first gas mixture into the plasma processing chamber at a first pressure, wherein the first gas mixture includes at least carbon, and wherein the first gas mixture has a condensation temperature. The method also includes cooling the chuck below the condensation temperature using the cooling apparatus thereby allowing at least some of the first gas mixture to condense on a surface of the substrate. The method further includes venting the first gas mixture from the processing chamber; flowing a second gas mixture into the plasma processing chamber, the second gas mixture being different in composition from the first gas mixture; and striking a plasma to form the conformal film.
Abstract:
At least two antenna coils are electrically connected in parallel to each other to generate uniform high density plasma, and capacitors are installed between the respective antenna coils and a ground to minimize an antenna voltage, thereby minimizing the effect of capacitive plasma coupling due to the antenna voltage.