Abstract:
A method for controlling a vehicle engine having a plurality of cylinders is provided. The method comprises: during engine idling, advancing spark timing of at least one cylinder to before a peak torque timing, and retarding spark timing from the advanced timing toward the peak torque timing in response to decreased engine speed to maintain idling speed.
Abstract:
A system for controlling a multiple cylinder internal combustion engine with electromagnetic valve actuation, comprising of at least one cylinder with an engine cylinder valve, a second controller operably coupled to the engine cylinder valve, said second controller configured to adjust at least one of the valve opening and closing timing of the engine cylinder valve, and a first controller connected with the second controller over a first link and a second link, wherein the first controller is configured to send an engine position indication signal to the second controller over the first link and receive a status signal from the second controller over the second link, and wherein the first controller outputs a synchronization degradation signal responsive to a synchronization error between the engine position indication signal and the status signal.
Abstract:
A method for controlling a vehicle engine having a plurality of cylinders and an electric motor configured to rotate the engine is provided. The method includes, during engine idling, advancing spark timing of at least one cylinder to substantially before a peak torque timing. The method further includes adjusting motor torque output of the electric motor to maintain engine idle speed.
Abstract:
A method for controlling a vehicle engine having a plurality of cylinders is provided. The method comprises: during engine idling, advancing spark timing of at least one cylinder to before a peak torque timing, and retarding spark timing from the advanced timing toward the peak torque timing in response to decreased engine speed to maintain idling speed.
Abstract:
A system and method for controlling operation of cylinder with at least an intake and exhaust valve and a piston are described. In one aspect, the method comprises maintaining at least one of the intake and exhaust valves in a closed position during a period. Further, closing the other of the intake and exhaust valves with the piston at a first position from, and then opening the other of the intake and exhaust valves at a second position of the piston closer to bottom center than said first position, during said period.
Abstract:
A method for operating an engine in a vehicle, the engine having at least a cylinder, the method comprising generating engine braking torque to stop rotation of the engine in a desired range by opening and closing at least an electrically actuated valve of the cylinder more than once during a cycle of the cylinder.
Abstract:
A method of operating an engine having at least one cylinder including an intake valve and an exhaust valve, the method comprising of injecting a first amount of fuel into the cylinder; auto-igniting a first mixture of air and said first amount of fuel by compressing said first mixture; injecting a second amount of fuel into the cylinder after auto-igniting said first mixture; combusting a second mixture of said second amount of fuel and gasses from auto-ignition of said first mixture; holding an intake valve of the cylinder closed between auto-igniting the first mixture and combusting the second mixture; and exhausting said combusted second mixture.
Abstract:
A method of transitioning a cylinder of an engine from a spark ignition mode to a homogeneous charge compression ignition mode, the cylinder having at least one electrically actuated intake valve and at least one exhaust valve, the method comprising of before a transition, operating the cylinder with at least some overlap between an opening event of the intake valve and an opening event of the exhaust valve in the spark ignition mode; in response to a transition request, operating the cylinder with at least some negative overlap between an opening event of the intake valve and an opening event of the exhaust valve, retarding the intake valve opening and closing timing by different amounts and retarding ignition timing; and further increasing negative overlap and performing the homogeneous charge compression ignition mode.
Abstract:
A method for improving engine starting for an engine having a variable event valvetrain is described. According to one aspect of the description, valve timing during a start can be set so that combustion stability and emissions may be improved.
Abstract:
A system and method to control engine valve timing of an internal combustion engine. Electromechanical valves are controlled to improve engine fuel economy. Further, the method can adjust valve operation to provide air-fuel charge motion and increase combustion stability.