Abstract:
Wireless-enabled loudspeaker includes a wooden capacitive touch user interface. The loudspeaker may comprise at least one electroacoustic transducer, a processor in communication with the at least one electroacoustic transducer, and a wooden exterior surface comprising a capacitive touch user interface that allows a user to control operation of the loudspeaker. The wooden exterior surface acts a dielectric for the capacitive touch user interface. The loudspeaker may comprise a wireless transceiver circuit for receiving and transmitting wireless communication signals via a wireless network. The wireless transceiver circuit may receive wirelessly audio content from streaming audio content servers that are connected to the Internet. The capacitive touch user interface comprises a plurality of user control icons etched in the wooden exterior surface, and a plurality of capacitive sense electrodes located under the wooden exterior surface.
Abstract:
Apparatus comprises adapter and speaker system. Adapter is configured to plug into port of personal digital audio player. Speaker system is in communication with adapter, and comprises multiple acoustic transducers, programmable processor circuit, and wireless communication circuit. In first operational mode, processor circuit receives, via adapter, and processes digital audio content from personal digital audio player into which adapter is plugged, and the multiple acoustic transducers output the received audio content from the personal digital audio player. In second operational mode, wireless communication circuit receives digital audio content from a remote digital audio source over a wireless network, processor circuit processes the digital audio content received from remote digital audio source, and the multiple acoustic transducers output the audio content received from the remote digital audio source.
Abstract:
Systems and methods permit a wireless device to receive data wirelessly via an infrastructure wireless network, without physically connecting the wireless device to a computer in order to configure it, and without having an existing infrastructure wireless network for the wireless device to connect to. A remote server hosts a website that permits a user of the wireless device to input via a computer credential data for at least one infrastructure wireless network. The content access point transmits the credential data for the at least one infrastructure wireless network to the wireless device via the ad hoc wireless network, such that, upon receipt of the credential data for the at least one infrastructure wireless network, the wireless device is configured to connect to the at least one infrastructure wireless network.
Abstract:
Apparatus comprises adapter and speaker system. Adapter is configured to plug into port of personal digital audio player. Speaker system is in communication with adapter, and comprises multiple acoustic transducers, programmable processor circuit, and wireless communication circuit. In first operational mode, processor circuit receives, via adapter, and processes digital audio content from personal digital audio player into which adapter is plugged, and the multiple acoustic transducers output the received audio content from the personal digital audio player. In second operational mode, wireless communication circuit receives digital audio content from a remote digital audio source over a wireless network, processor circuit processes the digital audio content received from remote digital audio source, and the multiple acoustic transducers output the audio content received from the remote digital audio source.
Abstract:
Systems and methods permit a wireless device to receive data wirelessly via an infrastructure wireless network, without physically connecting the wireless device to a computer in order to configure it, and without having an existing infrastructure wireless network for the wireless device to connect to. A remote server hosts a website that permits a user of the wireless device to input via a computer credential data for at least one infrastructure wireless network. The content access point transmits the credential data for the at least one infrastructure wireless network to the wireless device via the ad hoc wireless network, such that, upon receipt of the credential data for the at least one infrastructure wireless network, the wireless device is configured to connect to the at least one infrastructure wireless network.
Abstract:
Apparatus comprises adapter and speaker system. Adapter is configured to plug into port of personal digital audio player. Speaker system is in communication with adapter, and comprises multiple acoustic transducers, programmable processor circuit, and wireless communication circuit. In first operational mode, processor circuit receives, via adapter, and processes digital audio content from personal digital audio player into which adapter is plugged, and the multiple acoustic transducers output the received audio content from the personal digital audio player. In second operational mode, wireless communication circuit receives digital audio content from a remote digital audio source over a wireless network, processor circuit processes the digital audio content received from remote digital audio source, and the multiple acoustic transducers output the audio content received from the remote digital audio source.
Abstract:
Systems and methods permit a wireless device to receive data wirelessly via an infrastructure wireless network, without physically connecting the wireless device to a computer in order to configure it, and without having an existing infrastructure wireless network for the wireless device to connect to. A remote server hosts a website that permits a user of the wireless device to input via a computer credential data for at least one infrastructure wireless network. The content access point transmits the credential data for the at least one infrastructure wireless network to the wireless device via the ad hoc wireless network, such that, upon receipt of the credential data for the at least one infrastructure wireless network, the wireless device is configured to connect to the at least one infrastructure wireless network.
Abstract:
Systems and methods permit a wireless device to receive data wirelessly via an infrastructure wireless network, without physically connecting the wireless device to a computer in order to configure it, and without having an existing infrastructure wireless network for the wireless device to connect to. A remote server hosts a website that permits a user of the wireless device to input via a computer credential data for at least one infrastructure wireless network. The content access point transmits the credential data for the at least one infrastructure wireless network to the wireless device via the ad hoc wireless network, such that, upon receipt of the credential data for the at least one infrastructure wireless network, the wireless device is configured to connect to the at least one infrastructure wireless network.
Abstract:
Systems and methods that permit a wireless device to received data wirelessly via an infrastructure wireless network, without physically connecting the wireless device to a computer in order to configure it, and without having a have an existing infrastructure wireless network for the wireless device to connect to. A remote server hosts a website that permits a user of the wireless device to input via a computer credential data for at least one infrastructure wireless network. The content access point transmits the credential data for the at least one infrastructure wireless network to the wireless device via the ad hoc wireless network, such that, upon receipt of the credential data for the at least one infrastructure wireless network, the wireless device is configured to connect to the at least one infrastructure wireless network.
Abstract:
An assembly for holding a personal speaker relative to a user's ear. A headband assembly can include a band, a sleeve attached to an end of the band, and an arm moveably secured to the sleeve. The sleeve can include a pair of laterally opposed detent channels, and the arm can include a pair of spring-loaded bearings. Each spring-loaded bearing can engage one of the laterally opposed detent channels. The headband assembly can be adjusted by moving the arm relative to the sleeve. An arm of the headband assembly can be pivotally secured to a yoke by a magnetic pivot arrangement. The magnetic pivot arrangement can include a groove, a protrusion, and magnetic elements. A yoke can be pivotally secured to a housing by housing pivot arrangement. The housing pivot arrangement can include a pin extending from the yoke and a collar retained in the housing.