Abstract:
This disclosure relates to broadcast information block assistance for a wireless device. The wireless device may obtain a first plurality of broadcast information blocks from a first base station. The wireless device may receive a second plurality of broadcast information blocks associated with the first base station from a source other than the first base station. The wireless device may determine if the second plurality of broadcast information blocks match the first plurality of broadcast information blocks based on version information specified in the first plurality of broadcast information blocks. When the broadcast information blocks match, the wireless device may use the first and second pluralities of broadcast information blocks to perform communication with the first base station without obtaining the second plurality of information blocks from the first base station.
Abstract:
A device and method for transmitting user equipment capability information to a network. In a first mechanism, the device and method transmits carrier aggregation (CA) combinations supported by the user equipment in a priority order to the network. The priority order may be determined based on most recent camped bands and the neighbor bands of the most recent camped bands. In a second mechanism, the device and method transmits indicators corresponding to types of gapless measurements, where when an indicator is set to the user equipment being incapable of performing the type of gapless measurement, the capability message does not include individual indications for the bands for that type of measurement.
Abstract:
Systems, methods, and computer-readable media for managing or classifying movement states of an electronic device are provided that may utilize communications circuitry data from one or more communications circuitries when determining a current or future movement state of an electronic device.
Abstract:
This disclosure relates to techniques for securely performing connection release and network redirection in a wireless communication system. A wireless device may establish a radio resource control (RRC) connection with a first cell. The wireless device may receive a RRC connection release message from the first cell. The RRC connection release message may include an indication to redirect the wireless device to a second cell. The RRC connection with the first cell may be released. It may be determined whether security has been established with the first cell when the indication to redirect the wireless device to the second cell is received. A new serving cell may be selected based at least in part on whether security has been established with the first cell when the indication to redirect the wireless device to the second cell is received.
Abstract:
This disclosure relates to cellular service recovery techniques using cell-specific cellular service history information for an accessory device. According to some embodiments, cellular service history information relating to cellular service loss occasions for each of one or more cells from which the accessory device has previously lost cellular service may be stored. It may be determined that cellular service loss is currently occurring from a cell for which cellular service history information relating to cellular service loss occasions is stored. Cellular service recovery may be attempted using the cellular service history information relating to cellular service loss occasions for the cell from which the current cellular service loss is occurring.
Abstract:
Various mechanisms for paging link-budget-limited (LBL) devices are disclosed, including: (1) transmitting paging message with non-conventional paging identifier; (2) transmitting paging message(s) with increased power; (3) repeating transmission of paging message to support combining at receiver. Various mechanisms for UE device to signal LBL status are disclosed, including, transmitting status flag or special value of DRX cycle to network node as part of tracking area update and/or attach request. The network node informs a base station of the device's LBL status as part of a paging message. (The network node may, e.g., assign an S-RNTI to the LBL device from a reserved subset of S-RNTI space.) The base station invokes a paging enhancement mechanism when paging an LBL device. Alternatively, the base station may page UE devices without knowledge of LBL status, e.g., by counting paging attempts for a given UE, and boosting power after the Nth paging attempt.
Abstract:
Adaptive data collection practices in a multi-processor device. The device may include a first processor and a second processor. The first processor may operate in any of a plurality of power states. The first processor may indicate to the second processor when it transitions to a different power state. The second processor may collect information relating to its operation. The second processor may collect the information according to different information collecting modes depending on in which power state the first processor is operating. Less information may be collected in an information collecting mode corresponding to a lower power state of the first processor than in an information collecting mode corresponding to a higher power state of the first processor.
Abstract:
A method for adaptively disabling receiver diversity is provided. The method can include a wireless communication device determining an active data traffic pattern; defining a threshold channel quality metric based at least in part on a threshold channel quality needed to support a threshold quality of service for the active data traffic pattern; comparing a measured channel quality to the threshold channel quality metric; and disabling receiver diversity in an instance in which the measured channel quality metric satisfies the threshold channel quality metric.
Abstract:
A method for adaptively disabling receiver diversity is provided. The method can include a wireless communication device determining an active data traffic pattern; defining a threshold channel quality metric based at least in part on a threshold channel quality needed to support a threshold quality of service for the active data traffic pattern; comparing a measured channel quality to the threshold channel quality metric; and disabling receiver diversity in an instance in which the measured channel quality metric satisfies the threshold channel quality metric.
Abstract:
Adaptive data collection practices in a multi-processor device. The device may include a first processor and a second processor. The first processor may operate in any of a plurality of power states. The first processor may indicate to the second processor when it transitions to a different power state. The second processor may collect information relating to its operation. The second processor may collect the information according to different information collecting modes depending on in which power state the first processor is operating. Less information may be collected in an information collecting mode corresponding to a lower power state of the first processor than in an information collecting mode corresponding to a higher power state of the first processor.