Abstract:
The present invention is directed to apparatus and method for measuring the spectral characteristics of an object surface. The apparatus comprises a light source for generating an input signal comprising a plurality of wavelengths of energy and a diffraction grating for diffracting the input signal into a plurality of diffracted wavelengths of energy. A resonant mirror assembly associated with the diffraction grating sequentially directs a select diffracted wavelength to the object surface to generate a corresponding reflected wavelength of energy. The apparatus further comprises a sensor for determining each select diffracted wavelength of energy directed to the object surface and a detector for detecting one or more of the reflected wavelengths. The detector is coupled with the sensor for associating each select diffracted wavelength with each corresponding reflected wavelength.
Abstract:
A spectrometer that provides the ability to combine the advantages of high resolution, compactness, ruggedness, and low-power consumption of Fabry-Perot (FP) tunable filter spectrometer, with the multi-channel multiplexing advantage of FT and/or grating/detector array. The key concept is to design and operate a tunable FP filter in a multiple-order condition. This filter is then followed by a “low-resolution” fixed grating, which disperses the filtered n-order signal into a preferably matched N-element detector array for parallel detection. The spectral resolution in this system is determined by the FP filter, which can be designed to have very high resolution. The N-order parallel detection scheme reduces the total integration or scan time by a factor of N to achieve the same signal to noise ratio (SNR) at the same resolution as the single channel tunable filter method. This design is also very flexible, allowing spectrometer systems with appropriate order N to thereby optimize the system performance for spectral resolution and scan integration time. In addition to the significant reduction in scan integration time, there are two other advantages to this approach. The first, because the FP tunable filter is designed and operated under n-orders, the fabrication tolerances of the FP filter cavity and operating conditions are significantly loosened.
Abstract:
An auto-tracking spectrophotometer has a moveable look-ahead sensor for scanning at least a portion of a color matrix. The look-ahead sensor finds a portion of the color matrix for measurement by an optical system. The optical system for measuring the color matrix is then guided using the information provided by the look-ahead sensor.
Abstract:
Encoded spatio-spectral information processing is performed using a system having a radiation source, wavelength dispersion device and two-dimensional switching array, such as digital micro-mirror array (DMA). In one aspect, spectral components from a sample are dispersed in space and modulated separately by the switching array, each element of which may operate according to a predetermined encoding pattern. The encoded spectral components can then be detected and analyzed. In a different aspect, the switching array can be used to provide a controllable radiation source for illuminating a sample with radiation patterns that have predetermined characteristics and separately encoded components. Various applications are disclosed.
Abstract:
This invention relates to a wavemeter and an apparatus for the adjustment of the wavelength of a laser source. The invention proposes a wavemeter comprising an optical component, which generates an optical beam with a wavelength which depends on the optical power of the incident beam to be measured. To increase the precision of the wavelength measurement, the wavemeter is provided with a second measurement channel, whose optical signals are retarded by .pi./2 relative to the optical signals in a first measurement channel. The first and second measurement channels either each comprise a different etalon or the wavemeter comprises a single retardation plate to obtain the desired retardation. After calibration of the wavemeter, the optical power of the beam generated by the optical component is measured, the measured value of the optical power is compared with the power values of the calibration data and the wavelength in the calibration data corresponding to the measured value of the optical power is determined. A controller, such as a PC, compares the measured wavelength with the desired wavelength and automatically adjusts the wavelength of the signals generated by the laser source.
Abstract:
A monochromator according to the present invention has an arm 1 rotatably mounted on a rotation shaft 3, and a diffraction grating 6 is fixed to the arm 1. The arm 1 is rotated by a linear motor 9 including a moving part 91 fixed to the arm 1 and a stator part 92 fixed to a base 2. The linear motor 9 is a voice-coil linear motor constructed to allow the arm 1 to rotate reciprocatively around the rotation shaft 3 within a preset angular range. The absolute rotational position of the arm 1 is detected by a rotary encoder 7 including a crossbar 71 fixed to the arm 1 and a encoder block 72 fixed to the base 2. Based on the output signal of the rotary encoder 7, the linear motor 9 is controlled so that the moving part 92 rotates at a fixed angular speed around the rotation axis 3. Thus, the wavelength scanning is carried out at high speed, and sampling of monochromatic light having desired wavelengths is performed accurately.
Abstract:
In a spectroscopic instrument having a spherical grating to disperse incident light into a spectrum, the grating is oscillated on axis to scan the light passing through an exit slit through the spectrum or a portion of the spectrum. The axis of rotation of the grating is shifted to be displaced from tangent to the center of the spherical grating so that the light passing through the exit slit is substantially focused throughout the spectrum scanned by the instrument. The grating is mounted in the holder to shift the center of gravity of the grating and the holder to be on the axis on which the grating is pivoted.
Abstract:
A multistage interconnect network (MIN) capable of supporting massive parallel processing, including point-to-point and multicast communications between processor modules (PMs) which are connected to the input and output ports of the network. The network is built using interconnected switch nodes arranged in 2 .left brkt-top. log.sub.b N .right brkt-top. stages, wherein b is the number of switch node input/output ports, N is the number of network input/output ports and .left brkt-top. log.sub.b N .right brkt-top. indicates a ceiling function providing the smallest integer not less than log.sub.b N. The additional stages provide additional paths between network input ports and network output ports, thereby enhancing fault tolerance and lessening contention.
Abstract translation:能够支持大规模并行处理的多级互连网络(MIN),包括连接到网络的输入和输出端口的处理器模块(PM)之间的点对点和多点通信。 网络采用2 +539 logb N + 538级布置的互连交换机节点构建,其中b为交换节点输入/输出端口数,N为网络输入/输出端口数,+539 logb N +538表示 提供不小于logb N的最小整数的天花板功能。附加级提供网络输入端口和网络输出端口之间的附加路径,从而增强容错能力和减少争用。
Abstract:
A spectrophotometer which is highly manufacturable at minimum cost nevertheless provides precision of measurement of spectra components of light which is projected therein by maintaining precise optical alignment of optical and electrical components thereof. These components are mounted in a module which is contained in a housing having an entrance aperture which defines an object area for light the spectrum of which is measured by a photodetector in the module at an image area. The module has a base plate provided by a printed circuit board on which a closed wall encompasses an area (a corral) on one side of the circuit board. The wall is a one piece structure which extends to the vicinity of the edge of the board. It is assembled with the board as a unitary structure so that the assembly is made torsionally rigid and resists bending in the plane of the board. The module may be of sufficiently small size so as to be located in a housing which is hand held, thereby providing a hand-held spectrophotometer.
Abstract:
A spectrophotometer employs an array of optical elements to focus light from at least one, but preferably two light sources onto a fiber optic beam splitter that provides a pickup for a selected bandwidth of wavelengths of light in the spectral pattern. The spectral pattern can include wavelengths in the visible, near infrared and ultraviolet spectrum. To create the spectral pattern, two reflecting prisms having spherical surfaces are used, and the optical elements are arranged so that the two spectral bands from each prism are longitudinally aligned to create the spectral pattern. The prisms are on a motor driven pivot mount so that the spectral pattern may be swept across the pickup. The optical elements and the pickup are sized so that the selected bandwidth is less than twenty nanometers over the spectral pattern. The pickup is formed by a single row of the ends of fiber optic strands which are then collimated into two bundles to transmit a test component and a reference component of light. The sample cell is somewhat elongated, and a lens is interposed in the test component path before the sample cell, and this lens is sized to focus light axially through the sample cell without impinging on the sidewalls. Photodiode detectors, comparator circuitry and a controller are included.