Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may obtain access to a base station by performing an initial access procedure within an initial access bandwidth. In some cases, the UE may monitor for a cell specific configuration in the initial access bandwidth that indicate one or more first common search spaces within the initial access bandwidth that the UE may monitor for control information. Additionally, the UE may receive dedicated signaling after the initial access procedure that indicates a downlink bandwidth part (BWP) and one or more second common search spaces within the downlink BWP to monitor for control information. Accordingly, the UE may monitor the first common search spaces, the second common search spaces, or both based on the dedicated signaling.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive downlink control information within a control resource set (CORESET) configured with a wideband demodulation reference signal (DMRS) and including disjoint segments of resource blocks (RBs). The downlink control information may be located at least partially within a first segment of the disjoint segments and a second segment of the disjoint segments may be exclusive of the downlink control information. The downlink control information may include a grant of a set of resources for a downlink shared channel that overlaps with the CORESET. The UE may determine a rate matching operation for the wideband DMRS for a downlink shared channel for portions of the set of resources that overlap with the second segment of the disjoint segments, and receive the downlink shared channel on the set of resources according to the determined rate matching operation.
Abstract:
Systems and techniques are disclosed to reduce pilot overhead by providing common reference signals coded with cover codes that are orthogonal in time and frequency domains. Common reference signals that are coded by cover codes orthogonal in both domains can be de-spread in both the time and frequency domains for improved resolution and larger pull-in windows for both. Also disclosed is semi-uniform pilot spacing in both the frequency and time domains. In a time domain, a first pilot symbol pair is spaced by a first time interval from each other and a second pilot symbol pair is spaced by a second time interval from the first pair, the second interval being greater than the first. In a frequency domain, a first set of pilot symbols is densely placed in a selected frequency band and a second set of pilot symbols is sparsely placed surrounding and including the selected frequency band.
Abstract:
Improved methods, systems, devices, or apparatuses that support search space design are described. The described techniques enhance the number and utility of applied control channel candidates in the presence of blind decoding and control channel element (CCE) channel estimation limitations. The techniques allocate available blind decodes using a nested mapping scheme over one or more dimensions, based on a prioritization. In some other cases, the number of blind decodes may be allocated, either uniformly, or proportionally, between the plurality of search space set occasions. In some cases, the applied control channel candidates may be determined by dropping control channel candidates along one or more dimensions (e.g., search space set, or search space set occasion), until the blind decoding limitation or CE limitation is satisfied.
Abstract:
Systems and methods configured to provide size matching of downlink control information (DCI) formats to restrict a number of DCI format sizes for a set of DCI formats for concurrent use are described. In accordance with embodiments of the present disclosure, size matching at least two DCI formats of a set of DCI formats to restrict a number of DCI format sizes for the set of DCI formats for concurrent use is implemented. Restrictions with respect to the number of DCI format sizes for the set of DCI formats may correspond both to a first number of DCI sizes parameter based on a total number of DCI format sizes per wireless communication slot, and to a second number of DCI sizes parameter based on a total number of DCI format sizes for DCI formats used to carry DCI payload encoded using an identifier per wireless communication slot.
Abstract:
Methods, systems, and devices for wireless communication are described. In some cases, due to blind decoding and channel estimation (CE) limits, one or more user equipment (UE) specific search sets may be pruned for blind decoding and/or CE purposes. For instance, after hashing a set of common decoding candidates to control channel elements (CCEs) within the control region, the UE specific search sets may be pruned so as to conform to the blind decode limitation, since a common search space has already occupied a portion of the total blind decode limit. Following pruning, the UE may hash the sets of UE-specific decoding candidates associated with the one or more UE specific search sets to CCEs within the control region. The UE may further prune UE specific search sets, based on CE limits, while reusing CE for overlapping hashed locations.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may identify a hash value index associated with searching for a physical downlink control channel. The hash value index may be identified based at least in part on an index of an interval of a plurality of intervals within a periodicity. The user equipment may configure, based at least in part on the hash value index, a hash function associated with determining the hash value. Numerous other aspects are provided.
Abstract:
Systems and techniques are disclosed to reduce pilot overhead by providing common reference signals coded with cover codes that are orthogonal in time and frequency domains. Common reference signals that are coded by cover codes orthogonal in both domains can be de-spread in both the time and frequency domains for improved resolution and larger pull-in windows for both. Also disclosed is semi-uniform pilot spacing in both the frequency and time domains. In a time domain, a first pilot symbol pair is spaced by a first time interval from each other and a second pilot symbol pair is spaced by a second time interval from the first pair, the second interval being greater than the first. In a frequency domain, a first set of pilot symbols is densely placed in a selected frequency band and a second set of pilot symbols is sparsely placed surrounding and including the selected frequency band.
Abstract:
Systems and techniques are disclosed to reduce pilot overhead by providing common reference signals coded with cover codes that are orthogonal in time and frequency domains. Common reference signals that are coded by cover codes orthogonal in both domains can be de-spread in both the time and frequency domains for improved resolution and larger pull-in windows for both. Also disclosed is semi-uniform pilot spacing in both the frequency and time domains. In a time domain, a first pilot symbol pair is spaced by a first time interval from each other and a second pilot symbol pair is spaced by a second time interval from the first pair, the second interval being greater than the first. In a frequency domain, a first set of pilot symbols is densely placed in a selected frequency band and a second set of pilot symbols is sparsely placed surrounding and including the selected frequency band.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a set of time intervals is obtained from a received radio frequency signal. A power profile is determined for a frequency spectrum segment in each time interval. A first list is used to identify frequency spectrum segments that exhibit a power or energy profile over a range of frequencies associated with a downlink channel bandwidth, and a second list is used to identify frequency spectrum segments that have a total or average energy greater than a threshold energy relative to a noise floor. An absolute radio frequency channel number (ARFCN) of a wireless communication system is determined based on the time intervals identified in the first and second lists.