Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be configured to send, in a first network, a scheduling request (SR) associated with a second network. The apparatus may be further configured to receive an uplink grant based on the SR. The apparatus may be further configured to send, in the second network, uplink transmission based on the uplink grant. In an another aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be configured to receive, in a first network, a scheduling request (SR) associated with a user equipment (UE). The apparatus may be further configured to generate an uplink grant based on the SR. The apparatus may be further configured to send, in a second network, the uplink grant to the UE.
Abstract:
In an aspect of the disclosure, a method, a computer program product, and an apparatus are provided. The apparatus may be a first node. The first node determines to transmit a first packet to a second node in a first data slot of a first frame. The first data slot being associated with a first reservation resource and a second reservation resource. The first node determines whether the first node has a privilege for the first data slot of the first frame, when the first packet is of priority based traffic. The first node transmits a reservation message to the second node in the first reservation resource when the first node is determined to have the privilege for the first data slot.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus may be a UE. The apparatus may receive a message from a base station. The message may indicate a first dedicated resource for downlink transmission, and the first dedicated resource may be associated with a scheduled downlink transmission from the base station. The apparatus may determine a second dedicated resource for uplink transmission based on the first dedicated resource for downlink transmission indicated in the message. The second dedicated resource for uplink transmission may be associated with the scheduled downlink transmission. The apparatus may determine whether to transmit an information message, to be used by the base station for transmitting the scheduled downlink transmission, on the second dedicated resource.
Abstract:
A method, an apparatus, and a computer program product for managing power of a connection point in a wireless communication system are provided. A connection point may discover a mobile node, send to a gateway a request to increase an amount of power that the connection point can consume to service the discovered mobile node, and receive from the gateway a response related to the request to increase the amount of power. In an aspect, a gateway receives from a first connection point a request to change an amount of power that the first connection point is allowed to consume to service a discovered mobile node, determines whether to accept the request from the first connection point, and sends a first command to increase the amount of power that the first connection point is allowed to consume to service the discovered mobile node if the request is accepted.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may determine an allocated set of resources within a PRACH period. The apparatus may transmit pilot signals in the determined allocated set of resources.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. According to one embodiment, a method of operating a device includes: selecting a signal format from a plurality of signal formats, each of the plurality of signal formats corresponding to a respective coding and modulation scheme of a plurality of coding and modulation schemes; and sending a request for random access to a base station according to the selected signal format.
Abstract:
A method, an apparatus, and a computer program product for operating a user equipment (UE) are provided. The apparatus receives beamforming capability information indicating one of at least a digital, analog, or hybrid beamforming capability, the beamforming capability associated with a millimeter wave base station (mmW-BS). Based on the beamforming capability information, the apparatus scans N transmit beams from the mmW-BS for each of M receive beam directions of the UE, determines one or more preferred scanned beams from among the N transmit beams, and establishes a wireless communication link with the mmW-BS based on the preferred one or more scanned beams.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a discovery signal transmitted from a connection point (CP) via a directional beam. The discovery signal may include first information (including beam sweep configuration information) related to the CP. The apparatus then transmits an association signal to the CP based on the beam sweep configuration information and monitors for a resource grant from the CP based on the transmitted association signal. Alternatively, the apparatus transmits a discovery signal via a directional beam to a user equipment (UE). The discovery signal may include first information (including beam sweep configuration information) related to the apparatus. The apparatus then receives an association signal from the UE based on the beam sweep configuration information and determines a resource grant for communicating with the UE based on the received association signal.
Abstract:
A method, an apparatus, and a computer program product for sustaining a link with a wireless network are provided. The apparatus communicates data with the wireless network via a first link with a first base station, acquires a resource to perform a beam training sequence with a second base station, wherein the acquired resource allows the beam training sequence with the second base station to be performed while the data is communicated via the first link, performs the beam training sequence and exchanging signaling information with the second base station using the resource to establish a second link to the second base station, evaluates a link strength of the second link based on the beam training sequence, and determines whether to switch the data communication from the first link to the second link based on the evaluation.
Abstract:
In a first configuration, the apparatus may be a base station. The base station adjusts a periodicity for performing a beam sweep, sends information indicating the adjusted periodicity for performing a beam sweep, and performs the beam sweep at the adjusted periodicity. In a second configuration, the apparatus may be a UE. The UE receives information indicating a periodicity for performing a beam sweep from a base station, adjusts the periodicity for performing the beam sweep, and performs the beam sweep at the adjusted periodicity. For both configurations, the beam sweep is a plurality of transmissions of a beam in a plurality of different transmit spatial directions by one of the base station or the UE and a plurality of scans of the beam transmissions in a plurality of different scan spatial directions by an other of the one of the base station or the UE.