Abstract:
Methods, systems, and devices are described for multi-carrier communications involving one or more TDD component carriers and one or more FDD component carriers in a wireless communications network. Some described embodiments are directed to systems and methods for multi-carrier communications for a half-duplex device. The described methods, systems, and devices may simplify multi-carrier communications, such as the determination of hybrid automatic repeat request (HARQ) and/or scheduling timing with FDD+TDD carrier aggregation.
Abstract:
Certain aspects of the present disclosure relate to allocating user equipment (UE) processing capability among multiple access nodes. In an aspect, processing capability of a UE may be determined. When the UE is in communication with at least a first access node and a second access node, a first allocation of the UE processing capability for the first access node or a second allocation of the UE processing capability for the second access node may be determined. Resources may be assigned for the UE based at least in part on the first allocation or the second allocation. In an aspect, the first access node and the second access node may negotiate to determine the first allocation or the second allocation. In an aspect, the first allocation or the second allocation may be determined based on a previously-configured rule associated with a category of the UE.
Abstract:
Techniques for sending feedback information for multi-carrier operation are described. In an aspect, feedback information for data transmissions on multiple downlink carriers may be sent on at least one uplink resource determined based on at least one downlink resource used to send at least one downlink grant for the data transmissions. In another aspect, feedback information for data transmissions on multiple downlink carriers may be sent with reduced or no orthogonal spreading to enable more feedback information to be sent. In yet another aspect, feedback information for data transmissions on multiple downlink carriers may be sent with channel selection. A UE may send a transmission of at least one signal value on at least one resource to convey acknowledgement (ACK) information for data transmissions on multiple downlink carriers. The signal value(s) and resource(s) may be determined based on the content of the ACK information.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may be configured for carrier aggregation (CA) operation. The CA configuration may include multiple component carriers (CCs), including an enhanced component carrier (eCC). One CC of the CA configuration may be employed to signal channel availability of another CC of the CA configuration. For instance, a primary CC that utilizes licensed frequency bandwidth may signal channel availability of an eCC that utilizes unlicensed frequency bandwidth. This indication of channel availability may be sent before or after a clear channel assessment (CCA). Additionally, the indication of channel availability may be employed in both self- and cross-carrier scheduling configurations.
Abstract:
Techniques are described for wireless communication. One method includes determining, based at least in part on a number of downlink component carriers (CCs) scheduled for a user equipment (UE) during a reporting interval, a number of bits to be included in a physical uplink control channel (PUCCH) acknowledgement/non-acknowledgement (ACK/NAK) payload for the reporting interval; and selecting, based at least in part on the determined number of bits, a format of the PUCCH ACK/NAK payload.
Abstract:
Multiple data bearers may be configured for a user equipment (UE) for carrier aggregation and may be split among multiple evolved nodeBs (eNBs). The eNBs may be selected to serve the multiple data bearers for the UE based on various criteria such as channel conditions, loading, and the like. Various eNBs may be selected to serve data bearers for UE on a per data bearer basis, so that a particular eNB may be selected to serve each data bearer of the UE. Each data packet for the UE may then be sent via an appropriate data bearer.
Abstract:
Methods, systems, and devices are described for decreasing user plane latency in a wireless communication system. This may include routing a portion of bearer traffic to or from a UE through a local or serving gateway, or within or between base stations, rather than via the core network. In some examples, techniques for selected internet protocol flow ultra-low latency (SIPFULL) for systems in which users may have subscribed to enhanced services may be employed. The network may, for instance, authorize SIPFULL functionalities for UEs per access point name (APN) based on individual services subscribed by the UE to improve overall quality of service (QoS). In some examples, a UEs latency requirements or SIPFULL authorizations may affect mobility operations.
Abstract:
Techniques are described for preempting resource allocations to one or more UEs in the event that delay sensitive data is received. A resource allocation of a number of symbols may be granted to a first user equipment (UE) for first associated data to be transmitted. Subsequently, data may be received for a second UE that is more delay sensitive than the first data. The resource allocation to the first UE may be preempted, and resources allocated to the second UE for the second data within a variable length transmission time interval (TTI) of the resource allocation to the first UE. UEs may monitor for preemption during transmissions to other UEs in order to receive new resource grants associated with the preempted resource grant. Whether a UE monitors transmissions for preemption may be determined based on a quality or service (QoS) of the UE.
Abstract:
Certain aspects of the present disclosure provide techniques for managing resources utilized for enhanced physical downlink control channel (PDCCH) transmissions. According to certain aspects, a method is provided for wireless communications which may be performed, for example, by a user equipment (UE). The method generally includes receiving signaling indicating a set of time and frequency resources in one or more subframes allocated for an enhanced physical downlink control channel (PDCCH), receiving a downlink transmission in a subframe, making a determination to monitor for the enhanced PDCCH in the subframe based on the signaling, and decoding the enhanced PDCCH transmitted using the set of time and frequency resources in the subframe, in response to the determination.
Abstract:
Methods, systems, and devices are described for hierarchical communications and low latency support within a wireless communications system. An eNB and/or a UE may be configured to operate within the wireless communications system which is at least partially defined through a first layer with first layer transmissions having a first subframe type and a second layer with second layer transmissions having a second subframe type. The first subframe type may have a first round trip time (RTT) between transmission and acknowledgment of receipt of the transmission, and the second layer may have a second RTT that is less than the first RTT. Subframes of the first subframe type may be multiplexed with subframes of the second subframe type, such as through time division multiplexing. In some examples symbols of different duration may be multiplexed such that they different symbol durations coexist.