Abstract:
A method and a system determine a position of at least one sway sensor in an elevator system for sensing a lateral motion of an elevator rope between a first boundary location and a second boundary location. An operation of the elevator system is simulated with a model of the elevator system to produce an actual shape of the elevator rope caused by the operation. At least one sway location is determined, such that an error between the actual shape of the elevator rope and an estimated shape of the elevator rope is minimized. The estimated shape of the elevator rope is determined by interpolation of the first boundary location, the second boundary location, and the sway location. The position of the sway sensor is determined, such that the sway sensor senses the lateral motion of the elevator rope at the sway location.
Abstract:
A multi-panel electronic device and method are disclosed. In a particular embodiment, a method includes receiving first acceleration data from a first sensor coupled to a first portion of an electronic device. The method further includes receiving second acceleration data from a second sensor coupled to a second portion of the electronic device, where a position of the first portion is movable with respect to a position of the second portion. The method further includes determining a configuration of the electronic device at least partially based on the first acceleration data and the second acceleration data.
Abstract:
An image pickup apparatus which is capable of displaying a shooting azimuth for a user such that it can be intuitively understood with ease while keeping the amount of computations required to display a shooting azimuth small. When a though-the-lens image or a moving image from an image pickup sensor, which shoots a subject, is displayed on a TFT display, a shooting azimuth is displayed by a first azimuth display method based on shooting azimuth information, and when a though-the-lens image or a moving image from the image pickup sensor is not displayed on the TFT display, the shooting azimuth is displayed based on the shooting azimuth information by a second azimuth display method different from the first azimuth display method.
Abstract:
This invention relates to a rotatable device having two arms rotatably connected about a hollow hub wherein the arms include a cable extending through a passageway and the hub so as to minimize bending of the cables about each other when the arms are in a compact position. In particular this invention relates to a foldable GPS compass and a method relating thereto to present a compact folded device that is easier to install with minimal bending of the cables. The invention also discloses a detent disposed within the hub for accurate selective placement of the arms and method relating thereto
Abstract:
Wind parameter indication device and method for providing an indication of wind speed and wind direction. The device is deployed along an aerial trajectory toward a ground surface, such as after being ejected from an aircraft in flight. The device includes an anemometer, an altimeter, a compass, a processor and a transmitter. The anemometer obtains local wind speed and local wind direction measurements along the trajectory. The altimeter obtains altitude measurements along the trajectory. The compass obtains direction measurements along the trajectory. The device may further include an accelerometer, for obtaining acceleration measurements along the trajectory. The processor determines a wind speed value and a wind direction value associated with a predetermined altitude of the device. The transmitter transmits the determined wind speed value and wind direction value to a remotely located receiver. The device may further include a stabilizing decelerator to stabilize and decelerate the device along the trajectory.
Abstract:
Automatically identifying a geographic direction (e.g., a heading relative to true north) is disclosed. Responsive to a correction trigger event, geographic position data that identifies a geographic position of the device can be obtained. A magnetic declination based on the geographic position data can be obtained. A magnetic heading of the device can be obtained. A geographic direction based on the magnetic heading and the magnetic declination can be identified without user intervention.
Abstract:
The direction display device includes: a wireless communication section to perform near field wireless communication; a barometric pressure measuring section; a converting section to convert barometric pressure into altitude; an orientation measuring section to measure an orientation of a specified direction; an operation section; a display section; a registration controlling section to obtain current positional information from an external positioning device on the basis of a registration instruction of the measured orientation to store the current positional information as registered positional information so as to be correlated to registered orientation information; a registration position extracting section to extract the registered positional information including an altitude value whose difference from the converted altitude is within a predetermined range; and a display controlling section to cause the display section to indicate a direction regarding the registered orientation correlated to the registered positional information.
Abstract:
A moving body attitude angle processing apparatus capable of reducing cumulative errors in continuously measuring the attitude angle of a moving body is provided. The moving body attitude angle processing apparatus estimates the attitude angle of a moving body in accordance with outputs from an acceleration sensor, a magnetic sensor, and a gyro sensor that are mounted to the moving body, and outputs the attitude angle thus estimated. The moving body attitude angle processing apparatus includes: a gyro sensor that outputs an angular velocity vector; an acceleration sensor that outputs an acceleration vector; a magnetic sensor that outputs a magnetic field vector; a movement state determining device that determines a movement state of a moving body in accordance with an output from the acceleration sensor; and a gyro-sensor zero-point output estimating device that, when the movement state determining device determines the movement state to have been detected as a stationary state of the moving body, carries out a process of estimating a zero-point output of the gyro sensor in accordance with the output from the acceleration sensor, an output from the magnetic sensor, and an output from the gyro sensor.
Abstract:
A moving body attitude angle processing apparatus capable of reducing cumulative errors in continuously measuring the attitude angle of a moving body is provided. The moving body attitude angle processing apparatus estimates the attitude angle of a moving body in accordance with outputs from an acceleration sensor, a magnetic sensor, and a gyro sensor that are mounted to the moving body, and outputs the attitude angle thus estimated. The moving body attitude angle processing apparatus includes: a gyro sensor that outputs an angular velocity vector; an acceleration sensor that outputs an acceleration vector; a magnetic sensor that outputs a magnetic field vector; a movement state determining device that determines a movement state of a moving body in accordance with an output from the acceleration sensor; and a gyro-sensor zero-point output estimating device that, when the movement state determining device determines the movement state to have been detected as a stationary state of the moving body, carries out a process of estimating a zero-point output of the gyro sensor in accordance with the output from the acceleration sensor, an output from the magnetic sensor, and an output from the gyro sensor.
Abstract:
The subject matter disclosed herein relates to the control and utilization of multiple sensors within a device. For an example, motion of a device may be detected in response to receipt of a signal from a first sensor disposed in the device, and a power state of a second sensor also disposed in the device may be changed in response to detected motion.