Abstract:
An X-ray tube generates X-rays. An X-ray detector detects X-rays generated from the X-ray tube and transmitted through an object to be examined. A rotating frame continuously rotates the X-ray tube and the X-ray detector around the object. A reconstruction unit reconstructs a plurality of first volume data sets with different scan times for the same scan area of the object on the basis of an output from the X-ray detector. An image processing unit generates single second volume data set corresponding to a maximum value, an average value, a median value, or minimum value of the plurality of reconstructed first volume data sets in the temporal direction.
Abstract:
A radiological imaging apparatus of the present invention comprises an image pickup device and a medical examinee holding device that is provided with a bed. The image pickup device includes a large number of radiation detectors and radiation detector support plates. A large number of radiation detectors are mounted around the circumference of a through-hole and arranged in the axial direction of the through-hole. The radiation detectors are arranged in three layers formed radially with respect to the center of the through-hole and mounted on the lateral surfaces of the radiation detector support plates. Since the radiation detectors are not only arranged in the axial direction and circumferential direction of the through-hole but also arrayed in the radial direction, it is possible to obtain accurate information about a γ-ray arrival position in the radial direction of the through-hole (the positional information about a radiation detector from which a γ-ray image pickup signal is output). The use of accurate information about γ-ray arrival increases the tomogram accuracy. As a result, the present invention enhances the tomogram accuracy, that is, the PET examination accuracy.
Abstract:
A method and computed tomography unit are disclosed for producing computed tomograms of a patient's beating heart by voxelwise reconstruction of volume data records from prescribed cardiac cycle phases. Firstly, a multiplicity of voxelwise partial reconstructions are calculated from projection segments substantially smaller than 180° in accordance with small cardiac phase segments. The complete voxel data that cover overall at least 180° and originate from a preselected cardiac phase are subsequently summed up per cardiac phase to be considered from the pool of the incomplete reconstructed voxel data.
Abstract:
The present invention is intended to provide an image reconstruction method based on an iterative reconstruction technique and characterized by a short image reconstruction time, a small memory capacity, and high image quality. The image reconstruction method comprises the steps of: constructing a system model that has a plurality of concentric rings each segmented into a plurality of sectors; constructing a system matrix associated with one view, by using some of all the sectors constituting the system model, the some of all sectors being located on respective projection lines concerning the one view; creating a system matrix associated with another view, by transforming the system matrix associated with the one view; reconstructing an image through iterative reconstruction by using the system matrix and projection data; and transforming the image into an image composed of rectangular pixels.
Abstract:
A radiological imaging apparatus of the present invention comprises an image pickup device and a medical examinee holding device that is provided with a bed. The image pickup device includes a large number of radiation detectors and radiation detector support plates. A large number of radiation detectors are mounted around the circumference of a through-hole and arranged in the axial direction of the through-hole. The radiation detectors are arranged in three layers formed radially with respect to the center of the through-hole and mounted on the lateral surfaces of the radiation detector support plates. Since the radiation detectors are not only arranged in the axial direction and circumferential direction of the through-hole but also arrayed in the radial direction, it is possible to obtain accurate information about a γ-ray arrival position in the radial direction of the through-hole (the positional information about a radiation detector from which a γ-ray image pickup signal is output). The use of accurate information about γ-ray arrival increases the tomogram accuracy. As a result, the present invention enhances the tomogram accuracy, that is, the PET examination accuracy.
Abstract:
A method and a computed tomography system are disclosed for producing computed tomograms of an object. A set of detector output data that represent beams over a specific angular range and a scan of a specific subregion of the object, are divided into m≧2 complete partial detector output data records that respectively cover the same complete angular range, but are reduced with their sampling density by 1/m and have mutually independent data records. Intermediate image data records (m records) that represent the identical object region are reconstructed from the m complete partial detector output data records. A correlation analysis is carried out between the m intermediate image data records. Finally, an image data record is produced that consists only of correlated data and includes no uncorrelated data.
Abstract:
A method for estimating a diameter of an object of interest, includes extracting a sub-volume of voxels around a marker identifying a location of the object of interest, and determining a segmentation result identifying an edge of the object of interest by a reactive-diffusion method. The method further includes performing a boundary check on the segmentation result to determine whether the object of interest is solitary, estimating a diameter of the object of interest from the segmentation result upon determining the object of interest to be solitary, and extracting the object of interest by performing ellipsoid fit on the sub-volume and estimating a diameter of the object of interest upon determining the object of interest to be non-solitary.
Abstract:
Methods, systems and processes for providing efficient image reconstruction using local cone beam tomography which provide a reduced level of artifacts without suppressing the strength of the useful features; and in a dynamic case provide reconstruction of objects that are undergoing a change during the scan. An embodiment provides a method of reconstructing an image from cone beam data provided by at least one detector. The method includes collecting CB projection data of an object, storing the CB projection data in a memory; and reconstructing the image from the local CB projection data. In the reconstructing step, a combination of derivatives of the CB projection data that will result in suppressing the artifacts are found. The combination of derivatives includes collecting cone beam data that represents a collection of integrals that represent the object.
Abstract:
This invention describes a method for increasing the speed of the parabolic marching method by about a factor of 256. This increase in speed can be used to accomplish a number of important objectives. Firstly, the speed can be used to collect data to form true 3-D images or 3-D assembled from 2-D slices. Speed allows larger images to be made. Secondly, the frequency of operation can be increased to 5 MHz to match the operating frequency of reflection tomography. This allow the improved imaging of speed of sound which in turn is used to correct errors in focusing delays in reflection tomography imaging. This allows reflection tomography to reach or closely approach its theoretical spatial resolution of ½ to ¾ wave lengths. A third benefit of increasing the operating frequency of inverse scattering to 5 MHz is the improved out of topographic plane spatial resolution. This improves the ability to detect small lesions. It also allow the use of small transducers and narrower beams so that slices can be made closer to the chest wall.
Abstract:
The invention relates to a computed tomography method in which an examination zone is irradiated along a helical trajectory by a conical radiation beam. The radiation transmitted by the examination zone is measured by means of a detector unit and therefrom the absorption distribution in the examination zone is reconstructed without approximations. The reconstruction comprises a derivation of the measuring values of parallel rays of different projections, an integration of these values along K lines, a weighting of these values and a back projection.