Abstract:
A low-dose CT imaging system and method that operates according to a pulsed X-ray emission scheme according to a predefined sequence of rotation angles of the X-ray source, along with image reconstruction algorithms to achieve high spatial and temporal resolution for CT scans. The systems and methods involve high speed switching (on the order of milliseconds) to generate pulsed exposure of X-ray radiation to the patient, reducing radiation dose by 4-8 fold, or more.
Abstract:
Laser systems with reduced apparent speckle are provided. The laser systems emit laser light having different mode structures that change within a time period of an integration period of an imaging system used to observe a field of view that is at least in part illuminated by the laser systems.
Abstract:
According to one embodiment, in an X-ray computed tomography apparatus including a gantry unit including an X-ray tube and an X-ray detector, a bed unit, and a console, the X-ray computed tomography apparatus includes a storage unit, a power supply unit, and a power supply control unit. The storage unit stores examination schedule data of the X-ray computed tomography. The power supply unit selectively operates between an active mode of supplying power to at least one of the gantry unit, the bed unit, and the console and a standby mode of stopping supplying power to at least one of the bed unit and the gantry unit and supplying, to the console, power smaller than power supplied in the active mode. The power supply control unit controls switching from the active mode to the standby mode based on the examination schedule data.
Abstract:
According to one embodiment, an X-ray CT apparatus includes an generation unit, detection unit, processing unit, and reconstruction unit. The generation unit irradiates an object with X-rays. The detection unit includes detection elements corresponding to a plurality of channels, which output detection signals upon detecting X-rays. The processing unit smoothes projection data constituted by numerical values corresponding to signals output from the elements so as to more strongly smooth a portion exhibiting a larger amount of change in the numerical value. The reconstruction unit reconstructs an image by using a plurality of projection data smoothed by the image processing unit.
Abstract:
A cone-beam scanning system scans along a half circle. The reconstruction uses a weighting function which decreases for rows farther from the scan plane to take the redundancy of the projection data into account. Another embodiment uses a circle plus sparse helical scan geometry. Image data can be taken in real time.
Abstract:
A method for generating time-resolved 3D medical images of a subject by imparting temporal information from a time-series of 2D medical images into 3D images of the subject. Generally speaking, this is achieved by acquiring image data using a medical imaging system, generating a time-series of 2D images of a ROI from at least a portion of the acquired image data, reconstructing a 3D image substantially without temporal resolution from the acquired image data, and selectively combining the time series of 2D images with the 3D image.
Abstract:
Disclosed herein are an X-ray imaging apparatus which recognizes a marker located at a part to be subjected to X-ray imaging from an image of a subject imaged by a camera and which controls a respective movement of each of an X-ray tube and an X-ray detector to a respective position which corresponds to the recognized marker, and a method for controlling the same. An X-ray imaging apparatus includes an X-ray tube which radiates X-rays toward a subject, an X-ray detector which detects X-rays which propagate through the subject, an imaging unit which generates an image of the subject, a recognizer which recognizes a part to be subjected to X-ray imaging from the image of the subject, and a position controller which controls a movement of the X-ray tube and the X-ray detector to a position corresponding to the part to be subjected to X-ray imaging.
Abstract:
Radiographic images for different imaging directions taken by applying radiation to a subject from the different imaging directions are obtained, and a plurality of tomographic images of the subject are generated based on the obtained plurality of radiographic images. Then, compression processing in the direction perpendicular to slice planes of the generated tomographic images is applied to the tomographic images to generate compressed tomographic images, wherein a range of the imaging directions is obtained, and a compression rate of the compression processing is set based on the obtained range of the imaging directions.
Abstract:
In order to generate an X-ray CT image with optimal quality for each part and each region of an object when scanning the object across a plurality of parts using a plane detector, there is provided an X-ray CT apparatus including smoothing means 230 and filtering means 250 for generating a convolution filter on the basis of feature amounts of projection data output from the X-ray detector 12 and superimposing the convolution filter on the projection data, reconstruction means 200 for generating an X-ray CT image of the object by performing a reconstruction operation on the projection data on which the convolution filter is superimposed, and image display means 280 for displaying the image generated by the reconstruction means 200.
Abstract:
A method of computed-tomography and a computed-tomography apparatus in which x-ray projection data is acquired at a number of views for a scan of an object. Partial images are created from data for a desired number of said views. Full scan images are created from plural ones of the partial images. Non-overlapping time images are created from the full-scan images. Gradient images are also created. An improved image is created by weighting respective ones of the full scan and non-overlapping time images using the gradient image. The improved image has increased sharpness with reduced noise.