Abstract:
An image sensor including: light guides for irradiating light onto an irradiated object; a lens that focuses reflected light that was reflected by the irradiated object; a sensor that receives the reflected light that was focused by the lens; and a housing. The housing houses or holds the light guides, the lens, and the sensor, and is formed by integrating a housing metal portion and a housing resin portion.
Abstract:
An image sensor module includes: a sensor IC having light receivers arranged in a main scanning direction; a lens unit configured to form an image on the sensor IC with light transferred from a read target; a first light source unit having a first output surface extending along the main scanning direction and outputting a first linear light extending along the main scanning direction from the first output surface toward the read target, the first output surface being placed at a position spaced apart from the lens unit in a sub-scanning direction; and a second light source unit having a second output surface extending along the main scanning direction and outputting a second linear light extending along the main scanning direction from the second output surface toward the read target, the second output surface being placed between the lens unit and the first output surface in the sub-scanning direction.
Abstract:
An image scanner includes: a light source that irradiates, with light, a recording medium on which an image is formed; a light receiving portion that receives light reflected by the recording medium; and a reflecting portion that has a reflecting surface for measuring the amount of specular reflection light coming from the light source, the specular reflection light being included in the light received by the light receiving portion.
Abstract:
An image scanner includes: a light source that irradiates, with light, a recording medium on which an image is formed; a light receiving portion that receives light reflected by the recording medium; and a reflecting portion that has a reflecting surface for measuring the amount of specular reflection light coming from the light source, the specular reflection light being included in the light received by the light receiving portion.
Abstract:
An optical reader which reads image information on an original document by moving to the original document includes an illumination unit having at least one light source arranged on a substrate and illuminating the original document, a plurality of mirrors reflecting reflection light from the original document, a focusing lens focusing the reflection light from the original document reflected by the mirrors, and a photoelectric conversion element arranged in a focusing position of the focusing lens, a normal direction of an emission surface of the light source and a normal direction of a light-receiving surface of the photoelectric conversion element are the same direction, an original document reading position is set near an end portion of the optical reader in the normal direction.
Abstract:
An image sensor and a manufacturing method thereof are provided, so that the warp or the distortion is not caused even if there is the thermal expansion difference or the thermal contraction difference in the longitudinal direction between the linear illuminating device and the frame. The image sensor comprises a linear illuminating device for illuminating an original; a light-receiving element array for receiving reflected light from the original; a lens array for focusing the original on the light-receiving element array; a frame for containing the linear illuminating device, the lens array, and the light-receiving element array; and a resilient retaining portion for pressing the linear illuminating device, which is mounted in the frame, into the frame.
Abstract:
A lens unit (U15) includes a housing (45), an upper and a lower lens arrays (A1′, A2′), and a first and a second prisms (4A, 4B). Each of the lens arrays includes a plurality of lenses, a light-shielding member (4), and a plurality of positioning projections, all of which are integral with each other. Downwardly traveling light which enters the housing (45) through a first slit (45c) formed at an upper portion of the housing (45) is directed upward by the first prism (4A) to pass through the two lens arrays (A1′, A2′). The light is then directed downward by the second prism (4B) to exit the housing through a second slit (45d) formed at a lower portion of the housing (45).
Abstract:
A high speed imaging apparatus for CCD based scanners comprises a housing having separate compartments which complement modular assemblies installed therein. A decoder compartment houses components associated with locating and decoding an image. An optics compartment houses the mirrors and associated optics for reflecting the subject image onto the CCD detector. A lighting compartment includes high intensity lamps and the associated components for illuminating an object to be imaged. The lighting compartment includes a heat management system which removes the heat from the high intensity lamps and prevents heat from migrating to other compartments within the housing.
Abstract:
There is disclosed a light guide for guiding light from a light source in a longitudinal direction and radiating the light to illuminate an object to be illuminated, which includes a diffuser for diffusing the light from the light source along the longitudinal direction of the light guide, and a radiator for radiating the light diffused by the diffuser in a predetermined direction. By arranging the diffuser and the radiator so that a normal line passing through the center of the width of the diffuser is different from the predetermined direction at least in the vicinity of the light source when viewed in the longitudinal direction of the light guide, the illuminance distribution of the longitudinal direction of the light guide is uniformed.
Abstract:
An image reading apparatus is provided for reading out images printed on a document. The apparatus includes a casing elongated in the primary scanning direction and a transparent cover supported by the casing. In image-reading operation, the cover is held in sliding contact with a document at an image reading line. The apparatus further includes an insulating substrate attached to the casing, light sources for illuminating the image reading line, light sensors for receiving reflected light coming from the image reading line and a luminosity adjuster supported by the casing for equalizing luminosity along the image reading line.