Abstract:
Systems and methods relate to a semiconductor package comprising a first substrate or a 2D passive-on-glass (POG) structure with a passive component and a first set of one or more package pads formed on a face of a glass substrate. The semiconductor package also includes a second or laminate substrate with a second set of one or more package pads formed on a face of the second or laminate substrate. Solder balls are dropped, configured to contact the first set of one or more package pads with the second set of one or more package pads, wherein the first substrate or the 2D POG structure is placed face-up on the face of the second or laminate substrate. A printed circuit board (PCB) can be coupled to a bottom side of the second or laminate substrate.
Abstract:
The printed circuit board (100) includes the interposer (2) where the semiconductor element (1) is mounted and the electrode pad (8) is formed on one surface, the printed wiring board (3) where the electrode pad (9) is formed on one surface facing the interposer (2), and the joint material (70) for bonding the electrode pads (8) and (9). The joint material (70) includes the solder layer (60) formed by the solder material (11) and the metal layers (50), (50) provided to the electrode pads (8) and (9). Each metal layer (50) includes the metal particle aggregate (10) in which metal particles are integrated with voids and is formed by filling the voids in the metal particle aggregate (10) with melted solder material (11). It is possible to ensure the height of the solder, improve reliability of the bonding, and downsize the semiconductor device by using such joint material.
Abstract:
A method for manufacturing a semiconductor device package to provide RF shielding. The device is mounted on a laminated substrate having conducting pads on its top surface. A molding compound covers the substrate top surface and encapsulates the devices. The substrate is disposed on a tape; the molding compound and the substrate are cut through, forming package units separated by the saw cut width and exposing a portion of a conducting pad. In an embodiment, the tape is stretched to widen the gap between package units. A conductive shield is applied to cover each package unit and to make electrical contact with the exposed conducting pad portion, thereby connecting to a ground trace beneath the device and providing RF shielding for the device. A single-unit molding process may be used, in which the conducting pad is exposed during and after molding.
Abstract:
A wiring board includes a structure in which a plurality of wiring layers are stacked with insulating layers interposed therebetween, a plurality of pads for mounting an electronic component, the pads being formed on an outermost insulating layer on one surface side of the structure and exposed to the surface of the outermost insulating layer, and a recessed portion formed at a place corresponding to a mounting area for the electronic component. The recessed portion is formed in the outermost insulating layer at an area between the pads to which electrode terminals of the electronic component to be mounted are to be connected, respectively.