Abstract:
A method for stereoscopic image printing according to one aspect of the presently disclosed subject matter includes acquiring information on distribution of parallax of a multi-viewpoint image with two or more viewpoints; determining, based on the information on the distribution of parallax, a number of viewpoints of a stereoscopic image which is printed on a lenticular lens sheet; generating, if the number of viewpoints of the multi-viewpoint image is smaller than the determined number of viewpoints, a shortfall viewpoint image based on the inputted multi-viewpoint image; and printing a stereoscopic image which is made of the multi-viewpoint image and the generated viewpoint image.
Abstract:
A video display device (10) comprises a display unit (13) that includes a display surface emitting video light for displaying a composite image of a first image and a second image different from the first image, a parallax barrier (11) that separates the video light into first video light representing the first image and second video light representing the second image, a detection unit (12) that detects a position of an observer looking at the composite image, and a control unit (15) that controls a direction of the composite image in accordance with the position of the observer detected by the detection unit (12).
Abstract:
A method of creating a lenticular imaging article. The method comprises printing an interlaced composite image according to a reference grid of a printer, providing a lenticular lens sheet having a plurality of parallel lenticular lines between a plurality of lenslets, selecting an acute angle for an intersection between the first and second axes according to a function of a resolution of the interlaced composite image and a pitch of the lenticular lens sheet, and positioning the lenticular lens sheet so that the intersection forms the acute angle.
Abstract:
A 3D photographic printer uses a monochrome panel for displaying two or more images for composing a 3D photograph. Each image has a plurality of color image components. A light source with selectable color light components is used to illuminate the monochrome panel corresponding to the displayed color image components. The images are displayed at different locations so that these images can be projected onto a 3D print material through a projection lens at different projection angles. With the digital display device, it is possible to electronically locate the images at different locations and shift the images or mechanically moving the display device during the 3D photographic composing process. It is also possible that only the print material is mechanically shifted to different locations. The display device and the projection lens can be stationary.
Abstract:
A 3D photographic printer uses a digital display device for displaying two or more images for composing a 3D photograph. The images are displayed at different locations so that these images can be projected onto a 3D print material through a projection lens at different projection angles. With the digital display device, it is possible to electronically locate the images at different locations and shift the images or mechanically moving the display device during the 3D photographic composing process. It is also possible that only the print material is mechanically shifted to different locations. The display device and the projection lens can be stationary. The display device can have a monochrome LCD panel and a color light source for illuminating the LCD panel for printing.
Abstract:
Provide is a stereoscopic display device that is capable of, while preventing the crosstalk ratio from deteriorating, increasing the brightness during 3D display, switching 2D display and 3D display without decreases in the resolution, and achieving a switching response speed at the same level as that in the parallax barrier method. A switching liquid crystal panel (14) includes: a pair of substrates (28, 30); a liquid crystal layer (32) sealed between the substrates in pair (28, 30); a common electrode (38) formed over an entirety of an area where a parallax barrier (48) is realized on the substrate (30); and a plurality of drive electrodes (34) formed on the substrate (28), the drive electrodes (34), in collaboration with the common electrode (38), forming light-shielding parts (44) when a voltage is applied thereto, wherein the transmission parts (46) has an opening width that is equal to or greater than an opening width of the pixels (26) in a direction in which the transmission parts (46) and the light-shielding parts (44) are arrayed alternately.
Abstract:
An optical system comprising a circular image strip comprising an inner image strip, an outer image strip, and an effective zone, and a circular lenticule configured to direct light reflected from the inner image strip to a first eye of a viewer and to direct light reflected from the outer image strip to a second eye of a viewer when the viewer views an effective zone of the circular image strip is disclosed.
Abstract:
There is provided a display device including a display unit which periodically arranges and displays a plurality of images and a parallax barrier which is disposed in front of a pixel plane of the display unit and separates light from the display unit. The display device includes a disparity extraction unit which extracts information on a distribution of disparities between the view images, a parameter calculation unit which calculates a shift amount based on the disparity distribution information, a shift processing unit which performs shift processing on at least one of the view images based on the calculated shift amount, and a mapping processing unit which rearranges the at least one shift-processed view image on the display unit.
Abstract:
The present invention relates to a method and an apparatus for 3-D display based on random constructive interference. It produces a number of discrete secondary light sources by using an amplitude-phase-modulator-array, which helps to create 3-D images by means of constructive interference. Next it employs a random-secondary-light-source-generator-array to shift the position of each secondary light source to a random place, eliminating multiple images due to high order diffraction. It could be constructed with low resolution liquid crystal screens to realize large size real-time color 3-D display, which could widely be applied to 3-D computer or TV screens, 3-D human-machine interaction, machine vision, and so on.
Abstract:
In one embodiment, a stereoscopic video display apparatus includes: a plane display unit including a display screen in which first to third subpixels having respectively different color components are arranged in a matrix form; and an optical plate disposed to be opposed to the plane display unit and having a plurality of optical aperture parts. The plane display unit includes a configuration obtained by arranging the first subpixels on a first subpixel row, arranging the third subpixels on a second subpixel row adjacent to the first subpixel row, arranging the second subpixels on a third subpixel row adjacent to the second subpixel row, arranging the third subpixels on a fourth subpixel row adjacent to the third subpixel row, and arranging a set of the first to fourth subpixel rows in the column direction of subpixels on the display screen repeatedly.