Abstract:
A novel electrical circuit is disclosed that corrects for at least one undesired characteristic in an incoming electrical signal. In one embodiment, the apparatus reduces the number of wires heretofore required to correct electrical signals in a circuit. The apparatus also corrects for one or more of a second-order error in a measurement, an offset drift can be directly corrected during operation, and a span can be linearized during operation.
Abstract:
A foil strain gage is attached to a strained section for outputting a resistance change proportional to a strain generated at the strained section. The foil strain gage includes two grid-shaped resistors disposed in parallel on an insulating base material as detecting sections. The two detecting sections generate identical detection outputs when the foil strain gage is bonded on the strained section.
Abstract:
A sensed-pressure-data converter having a circuit for reducing a fluctuation of the output due to a fluctuation of a resistance and a resistance changing characteristic of a pressure sensitive resistance element and for reducing the output offset and offset drift of the pressure sensitive resistance element. The converter of the invention comprises a pressure sensitive resistance element (1), and a controller (2). The controller is an electric circuit connected to the pressure sensitive resistance element for detecting the electric characteristic of the element and includes A/D converters (3, 4), a D/A converter (6), and a memory (5). The controller compensates the electric characteristic due to a resistance change of the pressure sensitive resistance element and issues it from the D/A converter (6). The sensed-pressure-data converter further comprises a temperature sensor connected to the input terminal of the A/D converter in the controller, an adjustment input terminal (7) for inputting an error between the electric characteristic of the pressure sensitive resistance element and a reference electric characteristic into the input terminal of the A/D converter in the controller, which reduces the output offset and offset drift of the pressure sensitive resistance element.
Abstract:
A circuit and method for correcting a sense signal of a sensor (100) where the sense signal is reduced by a negative nonlinear error component introduced by membrane stress in a sensor structure (101). A first transducer (103) is disposed at a location (203) having substantial bending stress to produce a sense signal having a linear component and the nonlinear error component. A second transducer (102) is disposed at a location (202) with substantially zero bending stress to produce a sense signal having the nonlinear error component but a substantially zero linear component. The sense signal from the second transducer (102) is added to the sense signal from the first transducer (103) to correct the nonlinear error for producing a linear output sense signal (VOUT) of the sensor (100) which is representative of the physical condition.
Abstract:
A method for determining the state of at least one sensor whose mechanical behaviour is nonlinear as a function of the amplitude of the pressure exerted against the sensor, the sensor and an electromechanical transducer being able to be coupled to a support, the method comprising the steps of: applying an electrical signal at a first amplitude to the terminals of the first electromechanical transducer, and determining a first set of values of a parameter characteristic of the electrical impedance of the first electromechanical transducer in response to the application of the electrical signal; applying the electrical signal at a second amplitude to the terminals of the first electromechanical transducer, and determining a second set of values of the parameter characteristic of the impedance; measuring a deviation between the first set of values and the second set of values; determining a state of the sensor as a function of the deviation between the first set of values and the second set of values.
Abstract:
Collecting roll data associated with a sensing and mating rolls that form a nip uses first and second pluralities of sensors. Each sensor of the first plurality has a corresponding sensor in the second plurality which is associated with a same respective axial location on the sensing roll but is spaced-apart circumferentially. The sensors are located at axially spaced-apart locations of the sensing roll and generate either a first or second respective signal when entering the nip. Upon receiving a generated signal, a determination is made about which sensor generated the received signal and the membership of that sensor in one of the pluralities. Based upon a rotational position of the mating roll, a determination is made of which tracking segment associated with the mating roll enters the region of the nip concurrently with the signal to store the signal using the determined one tracking segment and the determined membership.