Abstract:
A UV absorption spectrometer includes a housing, a controller, and a sensor unit including an ultraviolet light source, an analytical area in an analytical cell or in running water or gaseous medium, and an UV wavelength separator including a UV detector. An ultraviolet light in a wavelength range of 200-320 nm emits from the light source through the analytical area to the wavelength separator, and the controller transforms output signals from the UV detector into absorbance values or optical densities for two or more wavelengths in the wavelength range, calculates differences of said absorbance values or optical densities, determines a concentration of a chemical in the solution with calibration constants found for a known concentration of the chemical and said differences of said absorbance values or optical densities.
Abstract:
The disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension that can be used for the detection of hazardous agents by irradiating a sample with light, forming an image of all or part of the sample using Raman shifted light from the sample, and analyzing the Raman shifted light for patterns characteristic of one or more hazardous agents.
Abstract:
The disclosure generally relates to a method and apparatus for compact dispersive imaging spectrometer. More specifically, one embodiment of the disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension. The portable system can include a photon emission source for sequentially illuminating a plurality of portions of said sample with a plurality of photons to produce photons scattered by the sample. The photon emission source can illuminate the sample along the first spatial dimension for each of plural predetermined positions of the second spatial dimension. The system may also include an optical lens for collecting the scattered photons to produce therefrom filtered photons, a dispersive spectrometer for determining a wavelength of ones of the filtered photons, a photon detector for receiving the filtered photons and obtaining therefrom plural spectra of said sample, and a processor for producing a two dimensional image of said sample from the plural spectra.
Abstract:
A method and apparatus for compact Fabry-Perot imaging spectrometer is presented. More specifically, in one embodiment, a tunable Fabry-Perot optical filter for providing a spatially accurate wavelength-resolved image of a sample having two spatial dimensions is presented. The optical filter may include plural filter elements having an initial predetermined spacing between adjacent filter elements; and a micro electro-mechanical system (“MEMS”) actuator. One of the plural filter elements may be attached to the MEMS actuator so that the actuator is capable of moving the one filter element relative to another of the plural filter elements to thereby tune the Fabry-Perot optical filter.
Abstract:
A color measurement instrument that is capable of both spot reading and strip reading. The instrument includes a handheld unit and a docking unit. When removed from the docking unit, the handheld unit is used for spot reading. When docked in the docking unit, the handheld unit and the docking unit are used together for strip reading. The handheld unit includes a self-storing target that is deployed for spot reading and stored for strip reading. The handheld unit also includes a self-storing calibration plaque that is deployed for calibration and stored otherwise. When docked, the handheld unit teeters on the docking unit between a normally closed position and a manually selectable open position to accommodate a variety of sample thicknesses.
Abstract:
A device for the simultaneous detection of radiation of different wavelength, comprising a number of base modules arranged one on top of the other, an optical module and an electronic module. One device each for reflecting and/or deflecting radiation of a determined wavelength-range is provided in the base modules. The light-detecting elements are associated with one of the devices each. The invention also relates to a base module, a charging unit, a method for adjusting the device and to the use of the device.
Abstract:
The disclosure generally relates to a method and apparatus for compact dispersive imaging spectrometer. More specifically, one embodiment of the disclosure relates to a portable system for obtaining a spatially accurate wavelength-resolved image of a sample having a first and a second spatial dimension. The portable system can include a photon emission source for sequentially illuminating a plurality of portions of said sample with a plurality of photons to produce photons scattered by the sample. The photon emission source can illuminate the sample along the first spatial dimension for each of plural predetermined positions of the second spatial dimension. The system may also include an optical lens for collecting the scattered photons to produce therefrom filtered photons, a dispersive spectrometer for determining a wavelength of ones of the filtered photons, a photon detector for receiving the filtered photons and obtaining therefrom plural spectra of said sample, and a processor for producing a two dimensional image of said sample from the plural spectra.
Abstract:
A handheld, portable color measuring device for measuring the primary colors of red, green and blue in a color target to be analyzed and connected to a built-in LCD display or connected to a separate personal computer. The color measuring device includes an elongated color measuring probe housing. A hollow cone shaped probe tip is attached to one end of the probe housing. A target contact end of the probe tip is placed against a color target to be measured. Inside the probe housing is a battery powered white LED light source connected to a color measurement switch. When the measurement switch is actuated, the white light source illuminates the color target surrounded by the target contact end of the probe tip. A light pipe is centered inside the probe housing and inside a portion of the probe tip. The light pipe captures the reflected light off the color target and projects the captured light onto a 3 color (RGB) sensor. The sensor collects an analog light signal which is made up of percentages of red, green and blue. The light signal is amplified and converter to a digital signal using an A/D converter. The A/D converter is part of a microprocessor mounted on a printed circuit board inside the probe housing. The digital signal is processed by the microprocessor and the percentages of red, green and blue are displayed on the LDC display or on the screen of the computer.
Abstract:
A handheld, portable color measuring device for measuring the primary colors of red, green and blue in a color target to be analyzed and connected to a built-in LCD display or connected to a separate personal computer. The color measuring device includes an elongated color measuring probe housing. A hollow cone shaped probe tip is attached to one end of the probe housing. A target contact end of the probe tip is placed against a color target to be measured. Inside the probe housing is a battery powered white LED light source connected to a color measurement switch. When the measurement switch is actuated, the white light source illuminates the color target surrounded by the target contact end of the probe tip. A light pipe is centered inside the probe housing and inside a portion of the probe tip. The light pipe captures the reflected light off the color target and projects the captured light onto a 3 color (RGB) sensor. The sensor collects an analog light signal which is made up of percentages of red, green and blue. The light signal is amplified and converter to a digital signal using an A/D converter. The A/D converter is part of a microprocessor mounted on a printed circuit board inside the probe housing. The digital signal is processed by the microprocessor and the percentages of red, green and blue are displayed on the LDC display or on the screen of the computer.
Abstract:
A spectrophotometer which is highly manufacturable at minimum cost nevertheless provides precision of measurement of spectra components of light which is projected therein by maintaining precise optical alignment of optical and electrical components thereof. These components are mounted in a module which is contained in a housing having an entrance aperture which defines an object area for light the spectrum of which is measured by a photodetector in the module at an image area. The module has a base plate provided by a printed circuit board on which a closed wall encompasses an area (a corral) on one side of the circuit board. The wall is a one piece structure which extends to the vicinity of the edge of the board. It is assembled with the board as a unitary structure so that the assembly is made torsionally rigid and resists bending in the plane of the board. The module may be of sufficiently small size so as to be located in a housing which is hand held, thereby providing a hand-held spectrophotometer.