摘要:
This application describes powdered fuels, methods of producing powdered fuels source, and dispersions of powdered fuels, as well as systems, kits, and methods for producing and adapting combustion devices to burn powdered fuel, either as a sole fuel source or in combination with existing fuel sources. Exemplary embodiments include engines and furnaces adapted to combust powdered fuel.
摘要:
Methods of combustion include metering a substantially explosible powder into an oxidizing gas using a positive displacement powder dispersion device to suspend the powder in the gas and directing the powder in the gas to form a controlled stream of a moving explosible powder dispersion. In some embodiments, the method further includes igniting the dispersion with an ignition source to produce a stationary deflagrating combustion wave and sustaining combustion by continuing to meter the powder into the gas. In other embodiments, the method further includes adjusting a nozzle velocity of the dispersion to reflect properties of the dispersion to create a sustainable flame and igniting the dispersion to produce a stationary deflagrating wave of the dispersion. In other embodiments, the method further includes igniting the dispersion in a combustion area to produce a stationary deflagrating wave such that a conductive heat transfer from combustion brings the powder to combustion temperature.
摘要:
A supersonic combustion apparatus and method of using the same including a side wall cavity having an enhanced mixing system with ground-based oxygen injection for hypersonic material and engine testing.
摘要:
A power plant with a combustion chamber (8) with a fluidized bed (14) and a device for adjusting the bed height, comprising a storage container (21) for bed material, the storage container (21) being connected to the combustion chamber (8) by a first conduit (22) for feeding out bed compound from the combustion chamber (8) to the container (21) and a second conduit (23) for returning bed compound from the container (21) to the combustion chamber (8). The storage container (21) is connected, via a conduit (34) with a valve, to a space having lower pressure than the pressure in the combustion chamber (8). The return conduit (23) is connected, via a conduit (67) with a valve, to a pressure gas source (10) having higher pressure than the pressure in the combustion chamber (8). Transport of bed compound from the combustion chamber (8) is achieved by reducing the pressure in the storage container (21). Return transport of bed compound to the combustion chamber (8) is brought about by supplying transport gas to the return conduit (23).
摘要:
PCT No. PCT/US 79/00843 Sec. 371 Date Oct. 15, 1979 Sec. 102(e) Date Oct. 15, 1979 PCT Filed Oct. 15, 1979 A combination rotating fluidized bed combustor and rotating fluidized bed heat exchanger particularly adaptable as the combustor and heat exchange unit, respectively, of conventional gas turbine engines is preferably arranged with the combustor nested within the heat exchanger for maximum compactness. The heat exchanger comprises an annular fluidized bed, defined by inner and outer spaced apart coaxial cylindrical, perforated walls, which rotates about the longitudinal axis of the cylinders. The bed is comprised of pulverulent inert particulate material and includes fluid-containing heat exchange tubes passing substantially longitudinally therethrough. Hot gases, such as turbine exhaust gases, enter the bed through the outer perforated wall, heat and fluidize the bed particles, heat the gas, usually compressed air, in the tubes, and exit the bed through the inner perforated wall. The heat exchange tubes direct the compressed air flowing therein from an inlet adjacent the inner perforated wall to an outlet adjacent the outer perforated wall such that the compressed air flows substantially countercurrently to the hot fluidizing gas. The combustor also comprises an annular fluidized bed, defined by inner and outer spaced apart coaxial, cylindrical, perforated walls, which rotates about the longitudinal axis of the cylinders. The heated, compressed air exiting the heat exchanger tubes and solid or liquid fuel enter the combustor bed through the outer perforated wall and fluidize the bed. The air reacts with the fuel within the bed to produce hot combustion gas which exits the bed, together with unreacted compressed air, through the inner perforated wall. When employed with gas turbine engines, the gases exiting the bed are directed into and through the vanes of the gasifier turbine and the power turbine and then into the rotating fluidized bed heat exchanger as the heating and fluidizing medium therefor.
摘要:
An engine includes at least one cylinder, an intake valve, a conduit, a positive displacement powdered fuel dispensing device, and an oxidizing gas source supplying an oxidizing gas to the conduit. The cylinder is defined by a cylinder block having a bore, a cylinder head coupled to the top of the cylinder block, and a piston received in the bore of the cylinder block. The intake valve is communicatively coupled with the cylinder head. The conduit is communicatively coupled with the intake valve. The positive displacement powdered fuel dispensing device is communicatively coupled with the conduit. The positive displacement powdered fuel dispensing device meters a supply of a powdered fuel including a substantially explosible powder such that the intake valve admits a powdered fuel dispersion including the substantially explosible powder dispersed in the oxidizing gas at an explosible ratio such that the powdered fuel dispersion is explosible.
摘要:
A direct-fired coal combustion system includes a swirl chamber having an input configured to receive a coal-water slurry and causing the coal-water slurry to mix with discharge air from a compressor to gasify the coal-water slurry and create a synthesis gas. The system also includes a cyclone separator directly coupled to the second end of the swirl chamber and a second stage combustion input coupled to an output of the cyclone separator.
摘要:
A direct-fired coal combustion system includes a swirl chamber having an input configured to receive a coal-water slurry and causing the coal-water slurry to mix with discharge air from a compressor to gasify the coal-water slurry and create a synthesis gas. The system also includes a cyclone separator directly coupled to the second end of the swirl chamber and a second stage combustion input coupled to an output of the cyclone separator.
摘要:
A supersonic combustion apparatus and method for using the same including a fixed geometric nozzle having a converging area, throat, and a diverging area, at least one fuel injection means and at least one flame stabilization means located in the divergent area, and an exit plane adjacent and downstream to the diverging area, where an initial first injection/flame stabilization means is located in the diverging area and the exit plane Mach is varied by heat addition in the diverging area by at least one more fuel injection means.