Abstract:
A gas turbine engine having speed an intermediate stage booster configured to provide speed change to a boost compressor. The boost compressor and fan stage are driven by a low pressure turbine; the fan stage rotates with the low pressure turbine shaft and the boost compressor rotates counter to the low pressure turbine shaft. The intermediate speed booster has an epicyclic gear train that includes an outer annulus, a sun gear, and a planetary gear, and may be engaged by a clutch in some embodiments.
Abstract:
An air turbine starter for starting an engine includes a housing, and a flow path communicating a flow of gas therethrough; a turbine member; a clutch; and a decoupler device at least partially housed within the output member of the clutch. The decoupler device includes a first shaft portion coupled to and rotating with the output member and a second shaft portion coupled to and rotating with the engine. The first and second shaft portions are axially aligned and configured to engage each another for rotation in a first direction and to separate from each other in a second direction to decouple the output member of the clutch from the engine. The starter further includes a bearing between the inner surface of the output member and the second shaft portion for reducing friction between the second shaft portion and the inner surface of the output member when the first and second shaft portions are decoupled.
Abstract:
A shaft coupling device to couple first and second shafts, said device comprising a fluid coupling having a first portion attached to the first shaft and a second portion attached to the second shaft wherein the device further comprises engagement means operable to switch the device between an engaged position and a disengaged position, the engaged position having each of the first and second shafts engaged with its respective portion of the fluid coupling and the disengaged position having at least one of the first and second shafts disengaged from its respective portion of the fluid coupling.
Abstract:
A hydraulic drive for an aircraft includes: a gear, a first hydraulic pump and a second hydraulic pump, wherein the gear is installed in a gear housing and wherein the first hydraulic pump and the second hydraulic pump in each case are installed in a pump housing that is affixed to the gear housing, or the two together are installed in a pump housing that is affixed to the gear housing; a hydraulic supply device including a first and a second hydraulic system for operating actuators of the aircraft; and a monitoring and drive device, with the hydraulic supply device including a first hydraulic drive for coupling the latter to a first engine, and a second hydraulic drive for coupling the latter to a second engine, wherein each hydraulic drive includes: a gear drive shaft for coupling the respective hydraulic drive to an engine output shaft of the respective associated engine; two hydraulic pumps that are coupled to a gear output shaft, in each case with a connection device for connecting the hydraulic pump to the pressure line and to the suction line of a hydraulic system; an aircraft comprising such a hydraulic supply device; as well as a method for configuring a hydraulic supply device.
Abstract:
A hybrid engine installation (200) includes drive element (204) suitable for driving a mechanical element (BTP, BTA) in rotation. In addition, the hybrid engine installation is remarkable in that it includes at least one gas turbine (253, 254) and at least one electric motor (201) mechanically linked to the drive element (204) to drive it in rotation.
Abstract:
A synchronizing stationary clutch system for compression braking in a two spool gas turbine engine is provided by the present invention. The synchronizing stationary clutch system allows the two shafts of a two spool gas turbine engine to be reliably coupled at any given speed of either shaft. This coupling ability is useful to a gas turbine engine functioning in a land vehicle for the purpose of slowing the forward momentum of a rolling vehicle. The clutch system may also allow the use of auxiliary power from an electrical motor to start the engine.
Abstract:
A shaft drive alternately for both directions of rotation, comprises, a shaft rotatably supported on bearings having first and second turbines connectable thereto, each including a respective first and second turbine wheel freely rotatable on the shaft in respective opposite first and second directions. The turbine wheels are driven by fluid which rotates the wheels in a selected direction and, in addition, displaces the turbine wheels so that a friction disc carried thereby is engaged with a respective first and second clutch to connect it to the shaft to impart the selected direction of rotation. When the turbine is stopped by not directing the fluid into the blades, in which case the clutch mechanism is moved out of engagement and the turbine wheel may run free of the shaft, the second turbine wheel may be connected in a similar manner by effecting engagement of the associated second clutch with the shaft when the fluid is directed to the second turbine for rotating the turbine wheel.
Abstract:
A turbine engine, provided with a fuel control, has a gasifier section and a free turbine power section with energizeable clutching means adapted for at least at times causing frictional engagement between the sections in order to vary the then existing temperature within a selected point of the engine to cause that temperature to change to a value consistent with prescribed limits for that temperature.
Abstract:
A starter system for a gas turbine engine in, for example, a hybrid electric engine is provided. The hybrid electric engine may include the gas turbine engine, an electric machine, and an electrical energy storage. The starter system may include the electric machine, and a low-pressure shaft of the gas turbine engine may be mechanically coupled to a rotor of the electric machine. The electrical energy storage may electrically power the electrical machine and receive electrical power from the electrical machine. In addition, a clutch may selectively couple the low-pressure shaft to a high-pressure shaft of the gas turbine engine. The clutch may, when engaged, transfer mechanical power from the low-pressure shaft, which is mechanically coupled to the electric machine, to the high-pressure shaft. Further, the clutch may disengage if a rotational speed of the high-pressure shaft exceeds a rotational speed of the low-pressure shaft.