Abstract:
In an example implementation, a sintering system includes optical fiber installed into a sintering furnace. A support structure inside the furnace is to support a token green object in a predetermined position and to hold a distal end of the fiber adjacent to the predetermined position. A light source is operably engaged at a proximal end of the fiber to transmit light through the fiber into the furnace. A light detector is operably engaged at the proximal end of the fiber to receive reflected light through the fiber that scatters off a surface of the token green object.
Abstract:
The invention relates to a method and a device for sintering objects by means of time-resolved detection of two- or three-dimensional surface profiles and, optionally, by means of temperature measurement in a high temperature furnace on the basis of optical measurement methods. During sintering, each surface point on an object can be measured for its position and, optionally, its temperature, and a change can be determined by successive measurements. The measured change additionally permits control of the sintering regime.The method comprises the steps of: placing an object 4 into a high temperature furnace 5; heating the furnace 5; generating a two- or three-dimensional surface profile at least of a subregion of the object 4 by: irradiating the object 4 with light from a light source 2a; detecting the light scattered by the object 4 with the aid of a detector 2b; determining the geometric surface profile from the detected light.
Abstract:
Certain preferred embodiments of the present invention provide an oil pump which is both light as well as compact. Accordingly, certain presently preferred embodiments disclose an oil pump having a housing comprising aluminum, and at least one mobile molded part therein. The mobile molded part being at least partially made from a sinterable composition comprising at least one austenitic iron-based alloy powder. The mobile molded part also has a heat expansion coefficient, which amounts to at least 60% of the heat expansion coefficient for the oil pump housing.
Abstract:
The invention relates to components which are produced or processed by powder metallurgy, and to processes for producing components of this type. The components produced by powder metallurgy are intended both to have porous regions and to provide fluid-light properties, and it should also be possible to produce them at correspondingly low cost and suitably flexibly. For this purpose, a component of this type has at least one porous region, which is formed from an intermetallic phase or solid solutions. However, it may also have a corresponding surface coating. Moreover, in a component of this type there is at least one areal fluid-tight region which is formed from a metal or metal alloy of the corresponding intermetallic phase or solid solution.
Abstract:
Precise control of the shrinkage upon sintering of bodies made from mixtures of particulate materials and organic binders is achieved through precision pycnometry of the particulate materials and of the resulting sintered bodies, thus allowing a single molding tool to be used to produce parts in different sizes and from different materials and to tight manufacturing tolerances.
Abstract:
The present invention provide metallic nickel powder in which the occurrence of delaminatoin can be prevented by providing superior sintering propreties in production processes for multilayer ceramic capacitors and by providind superior dispersion characteristics in the forming of conductive pastes. By being brought into contact with nickel chloride gas and a reducing gas at a temperature in the range of the reduction reaction, metallic nickel power is node gas and a reducing gas at a produced in which the oxigen content is 0.1 to 2.0% by weight and there is not absortion peak at wavelengths ranging from 3600 to 3700 cm−1 in infrared spectroscopy.
Abstract:
A method is disclosed to accurately determine the volumetric composition of thermoplastic compounds made from sinterable materials mixed with an organic binder so that parts produced from such compounds will have a precisely controlled shrinkage upon sintering. The invention allows the use of a single molding tool to fabricate parts to very tight manufacturing tolerances in a range of different sizes and from different materials such as stainless steels, carbides, advanced ceramics, metal and ceramic matrix composites, etc. The invention also allows the miniaturization of metal and ceramic injection molded components.
Abstract:
Techniques for 3-D printing a tooling shell for use in producing panels for a transport structure, such as an automobile, boat, aircraft, or other vehicle, or other mechanical structure, are disclosed. A 3-D printer may be used to produce a tooling shell containing Invar and/or some other material for use in molding the panels. A channel may be formed in a 3-D printed tooling shell for enabling resin infusion, vacuum generation or heat transfer. Alternatively, or in addition to, one or more hollow sections may be formed within the 3-D printed tooling shell for reducing a weight of the shell.
Abstract:
Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to a leakage area of the turbomachine component.
Abstract:
The invention relates to a functionally graded material shape (1) where a first material (M1) is fused with a second material (M2) through sintering and a method of production of said functionally graded material shape (1). Said first material (M1) has a first coefficient of thermal expansion (α1) and said second material (M2) has a second coefficient of thermal expansion (α2), differing from the first coefficient of thermal expansion (α1). The invention is characterized in that the shape (1) further comprises a third material (M3) adapted to, together with M1 and M2, create an intermediate composite material phase intermixed between the first and the second materials (M1, M2). Said third material (M3) has a coefficient of thermal expansion (α3) intermediate between the first coefficient of thermal expansion (α1) of the first material (M1) and the second coefficient of thermal expansion (α2) of the second material (M2).