Abstract:
The disclosure provides a porous metal substrate structure with high gas permeability and redox stability for a SOFC and the fabrication process thereof, the porous metal substrate structure comprising: a porous metal plate composed of first metal particles; and a porous metal film composed of second metal particles and formed on the porous metal plate; wherein the porous metal plate has a thickness more than the porous metal film, and the first metal particle has a size more than the second metal particle. Further, a porous shell containing Fe is formed on the surface of each metal particle by impregnating a solution containing Fe in a high temperature sintering process of reducing or vacuum atmosphere, and the oxidation and reduction processes. The substrate uses the porous shells containing Fe particles to absorb the leakage oxygen.
Abstract:
[Object]There is provided a porous sintered body has a uniform porosity, a high level of freedom in body formation which allows formation into varieties shapes and various levels of porosity, and a very large surface area.[Solution]The porous sintered body includes: hollow cores which follow a vanished shape of an interlaced or otherwise structured fibriform vanisher material; sintered walls 226 which extend longitudinally of the cores and obtained by sintering a first sintering powder held around the cores; and voids formed between the sintered walls. The cores and the voids communicate with each other via absent regions formed in the sintered walls. The sintered walls have surfaces formed with a sintered microparticulate layer 232 made from a material containing a second sintering powder which has a smaller diamater than the first sintering powder, and has predetermined pores 231.
Abstract:
A grid (1) for selective transmission of electromagnetic radiation and a method for manufacturing such grid is proposed. Therein, the grid (1) comprises a structural element with walls (3) comprising a plurality of particles (19) of a radiation-absorbing material wherein the particles (19) are sintered together such that pores (21) are present between neighboring particles (19). The pores (21) are at least partially filled with a second solid material. The filling of the pores (21) can be done by inserting the second material in a liquid, preferably molten form into the pores. The second material can be itself radiation-absorbing as well and may help to both, increase the mechanical stability of the grid and to enhance the radiation-absorbing properties.
Abstract:
The disclosure provides a porous metal substrate structure with high gas permeability and redox stability for a SOFC and the fabrication process thereof, the porous metal substrate structure comprising: a porous metal plate composed of first metal particles; and a porous metal film composed of second metal particles and formed on the porous metal plate; wherein the porous metal plate has a thickness more than the porous metal film, and the first metal particle has a size more than the second metal particle. Further, a porous shell containing Fe is formed on the surface of each metal particle by impregnating a solution containing Fe in a high temperature sintering process of reducing or vacuum atmosphere, and the oxidation and reduction processes. The substrate uses the porous shells containing Fe particles to absorb the leakage oxygen.
Abstract:
The present invention relates to a combustion reactor for nanopowders, a synthesis apparatus for nanopowders using the combustion reactor, and a method of controlling the synthesis apparatus. The combustion reactor for nanopowders comprises an oxidized gas supply nozzle connected to an oxidized gas tube; a gas supply unit supplying a fuel gas and a precursor gas; and a reaction nozzle forming concentricity on an inner wall of the oxidized gas supply nozzle to be connected to the gas supply unit and having an inlet opening for supplying an oxidized gas disposed at a region adjacent to a jet orifice for spraying flames. In the present invention, it is possible to precisely control the stability of flames, the uniform temperature distribution of flames and the temperature of flames that affect the properties of nanopowders, and the deposition of oxide in the combustion reactor is prevented to thus enable a continuous and uniform reaction for a long time, thereby enabling an economic and efficient synthesis of nanopowders.
Abstract:
A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.
Abstract:
The invention relates to metal foam bodies having an open-porous structure as well as a method for producing thereof wherein according to the set task such metal foam bodies are to be provided which achieve an increased oxidation resistance and/or an increased corrosion resistance. With the metal foam bodies having an open-porous structure according to the invention, for such metal foam bodies within the webs of the open-porous structure there are channel shaped cavities formed as being determined by the production. At the same time, the webs and cavities will be provided with a metallic protective layer made of a material differing from the metallic starting material of the foam body or the channel shaped cavities will be filled with this material. For this, an adequate metal powder or an alloy component being included in the powder will be used which becomes liquid and forms a liquid phase respectively during thermal treatment below a temperature at which the metal of the base foam body is melting. Due to the capillary action wetting the surfaces of channel shaped cavities within the webs can be achieved such that after cooling down a metallic protective layer is forming or the channel shaped cavities are filled.
Abstract:
The invention provides porous particles that produce a predetermined optical response and that may be manipulated magnetically. A preferred particle of the invention has a porous structure that produces a predetermined optical response and magnetic material adhered to the particle. Another preferred particle is amphiphilic. The optical response provided by a particle of the invention enables particles of the invention to be used in sensing, labeling, signaling, display and many other applications. The magnetic nature of the present magnetic particles permits the particles themselves to be manipulated, e.g., vibrated, moved and re-oriented. The porous particles can also be used to control, move, and/or deliver small volumes of liquids and solids associated with the particles.
Abstract:
The invention relates to implantable medical devices, particularly, to porous structures for such devices. In one aspect, the invention provides a porous metal scaffold comprising a porous metal network having pores defined by metal webs, the metal webs covered with at least one layer of metal particles bonded to the metal webs. In other aspects, the invention provides methods of forming porous scaffolds. In one such aspect, the method includes providing a polymer foam; forming a skin of biocompatible metal on the polymer foam by low temperature arc vapor deposition; and heating the polymer foam and the metal skin above the decomposition temperature of the polymer foam in an inert gas atmosphere; thereby the polymer foam decomposes producing a green metal foam. In yet other aspects, the invention provides methods of improving stability of porous scaffolds.
Abstract:
The invention relates to metal foam bodies having an open-porous structure as well as a method for producing thereof wherein according to the set task such metal foam bodies are to be provided which achieve an increased oxidation resistance and/or an increased corrosion resistance. With the metal foam bodies having an open-porous structure according to the invention, for such metal foam bodies within the webs of the open-porous structure there are channel shaped cavities formed as being determined by the production. At the same time, the webs and cavities will be provided with a metallic protective layer made of a material differing from the metallic starting material of the foam body or the channel shaped cavities will be filled with this material. For this, an adequate metal powder or an alloy component being included in the powder will be used which becomes liquid and forms a liquid phase respectively during thermal treatment below a temperature at which the metal of the base foam body is melting. Due to the capillary action wetting the surfaces of channel shaped cavities within the webs can be achieved such that after cooling down a metallic protective layer is forming or the channel shaped cavities are filled.