摘要:
Physical downlink channels PPHY1, PHY2 are summed in a summation unit 10. The output of summation unit 10 is forwarded to another summation unit 12, where it is combined with the primary and secondary synchronization channels P-SCH, S-SCH. The secondary synchronization channel S-SCH is formed as in WCDMA. The primary synchronization channel P-SCH is formed by connecting a switch SW either to a code generator 14 generating the conventional code PSCWCDMA or a code generator 18 generating the code PSCNEW. The selection is controlled by a PSC controller 18. This controller can be adapted to produce a P-SCH in accordance with one of several formats. PSCNEW has the properties that it is a hierarchical Golay sequence constructed by a plurality of constituent sequences with at least one of the constituent sequences being the Golay sequence, and that it is orthogonal to the primary and secondary synchronization codes used in non-MBSFN capable WCDMA.
摘要:
In one of its aspects, the technology concerns a method of processing a signal which includes physical data channels which have been channelized using spreading codes. The method comprises (1) despreading unoccupied spreading codes (e.g., codes which are essentially unobscured by traffic data) included in the signal to obtain unoccupied code despread values, (2) using the unoccupied code despread values to form an impairment covariance matrix; and (3) using the impairment covariance matrix along with a channel estimate to form a processing parameter. The processing parameter can be one of combining sets and a signal quality estimate. In another of its aspects, the technology concerns a coherent, linear equalizer apparatus configured to process a signal which includes physical data channels which have been channelized using spreading codes. The equalizer apparatus comprises plural delay fingers (32) configured to despread unoccupied spreading codes included in the signal to obtain unoccupied code despread values, and a generator (60) configured to use the unoccupied code despread values to form an impairment covariance matrix.
摘要:
Channel quality metrics (such as SINR, BLER, and the like) are derived from a raw bit error rate (RBER), defined as the error rate of raw bits output by a demodulator. These initial raw bits are decoded and error-checked (or error-corrected). The error-free decoded bits are re-encoded, and the regenerated raw bits are compared to the initial raw bits to determine the RBER. The RBER is then converted to SINR, BLER, or other channel quality metric. The RBER-based metrics are derived from a data channel rather than reference signals, and hence more accurately reflect deviations from nominal transmission power level, and include receiver demodulator impairments.
摘要:
In a receiver with a multi-stage equalizer, such as an SLI equalizer, cumulative symbol estimates generated in one or more early stages of the equalizer are used as effective pilot symbols to improve channel estimation for later stages.
摘要:
A node (e.g., base station, signal processing unit) is described herein that includes a symbol detector and a method which are capable of suppressing interference caused by one user device (which may be in softer handoff mode) to reduce performance degradation to other intra-cell user devices and/or other inter-cell user devices (which may not be in softer handoff mode).
摘要:
Methods and apparatus are disclosed for transmitting data to a remote node via each of two or more transmitted carrier signals, wherein a distinct outbound packet data traffic channel is mapped to each transmitted carrier signal. In an exemplary method, aggregated control channel data is formed by combining control channel data corresponding to each of two or more received carrier signals, simultaneously transmitting traffic channel data to the remote node on each of the two or more outbound packet data traffic channels, and transmitting the aggregated control channel data using one or more physical control channels mapped to a first one of the transmitted carrier signals. In particular, these methods and apparatus may be applied to a multi-carrier High-Speed Packet Access (HSPA) system.
摘要:
The method an apparatus described herein manages uplink resources to increase spectral efficiency and system capacity. According to one embodiment of the present invention, a base station may be assigned two or more downlink carriers for downlink transmission and two or more corresponding uplink carriers. In a multi-carrier mode, the base station may transmit signals on two or more downlink carriers to the same mobile terminal, and receive signals from the mobile terminal on one of the paired uplink terminals. The uplink carriers can be operated at different interference levels and the uplink traffic can be divided between the available uplink carriers based on the type of traffic and/or data transmission parameters. The mobile terminals may also be allowed to switch between the uplink carriers to improve overall efficiency.
摘要:
A system and method for determining a downlink transmit power level for a downlink signaling channel such as the E-DCH HARQ Indicator Channel (E-HICH) in a cellular radio communication network, wherein the transmit power level is calculated to achieve a desired signaling message error rate. The base station determines a diversity order of an uplink control channel from a mobile station, and sets the downlink E-HICH transmit power based on the desired signaling message error rate and the diversity order of the uplink control channel. Optionally, the base station may first determine whether the cell transmitting the E-HICH is the serving cell for the High-Speed Downlink Shared Channel (HS-DSCH). If so, the base station determines the downlink transmit power level for the downlink signaling channel as an offset from the reported Channel Quality Indicator (CQI) value.
摘要:
Multi-transmitter interference caused by one or more interfering own-cell and/or other-cell transmitters is reduced in a RAKE-based receiver. The RAKE-based receiver comprises a plurality of RAKE fingers, a processor and a combiner. The plurality of RAKE fingers are configured to despread received symbols, wherein a delay for a first one of the plurality of RAKE fingers corresponds to a symbol of interest transmitted by a first transmitter and a delay for a second one of the plurality of RAKE fingers corresponds to an interfering symbol transmitted by a second transmitter. The processor is configured to determine a cross-correlation between the symbol of interest and the interfering symbol. The combiner is configured to combine the symbol of interest with the interfering symbol using the cross-correlation to reduce interference attributable to the interfering symbol from the symbol of interest.
摘要:
A joint detector that improves the performance of receiving a downlink control channel signal for a near-end mobile terminal in the presence of a stronger control channel signal addressed to a far-end mobile terminal sharing the same OVSF, or channelization, code through the use of orthogonal signature sequences. Depending on the specific embodiment, the joint detector may produce the desired bits for the control signal of interest, or may produce detected bits for all control signals sharing the same OVSF code. The joint detector despreads and combines the received code-multiplexed signal, utilizing knowledge of the cross correlations of the set of signature sequences and time-varying channel coefficients to alleviate performance degradation caused by interference from other signals. In various embodiments, the joint detector may be implemented as a modified decorrelating detector, a modified MMSE detector, a modified LS estimator detector, a successive interference-canceling detector, or a jointly hypothesized detector.