Abstract:
A driving device is used in an image reading apparatus, and reciprocates a scanning unit for reading an image on an original. The driving device comprises a pull member, a driving pulley which transmits driving force to the pull member, a following pulley which applies tension to the pull member and a pulley holder having a pulley axis which holds the following pulley rotatably. Then, the pulley axis has a lock pawl capable of locking an upper end portion of the following pulley and canceling engagement with the following pulley by being tilted toward a side of an axial center by elastic deformation. Furthermore, the lock pawl is arranged at a side of a tension acting direction from the pull member to the following pulley except the farthest position from the driving pulley among positions in a circumferential direction of the pulley axis. It is possible to attach and detach the following pulley easily at a time of maintenance or the like.
Abstract:
A sheet transport apparatus is equipped with a sheet transport guide section for guiding a sheet to be transported. The sheet transport guide section includes a first transport guide member swingable about a first axis, and a second transport guide member swingable about a second axis, the second transport guide member forming a sheet transport path between the second transport guide member and the first transport guide member. The second transport guide member is arranged at a first position when the first transport guide member is closed, at a second position where the second transport guide member is opened from the first position when the first transport guide member is opened, or at a third position where the second transport guide member is opened from the second position.
Abstract:
An image reading apparatus includes an image scanning unit that is provided with a holding portion holding a flexible flat cable. The holding portion is protruded toward an upstream side in a sub scanning direction, and provided with a second wall part. The flexible flat cable that is extended from a connector is brought into contact with the second wall part. As for the flexible flat cable, a downward movement is regulated by a lower holding portion and an upward movement is regulated by an upper holding portion. Accordingly, the flexible flat cable does not rise.
Abstract:
An illuminating device capable of stably illuminating an irradiated object such as a document while suppressing light loss with a simply structure is provided.An LED array and a reflective plate are disposed sandwiching a slit (St) through which light reflected by a document MS passes and a light-guiding member is disposed on the side of the LED array. The light-guiding member includes a direct emission unit disposed between an illumination range y centered on a document reading position and the LED array and an indirect emission unit disposed between the reflective plate and the LED array, a light incidence face of the direct emission unit and a light incidence face of the indirect emission unit are disposed at mutually different position around the LED array, and the LED array is disposed on a side of an interior angle formed by the light incidence faces.
Abstract:
An illuminating device capable of stably illuminating an irradiated object such as a document while suppressing light loss with a simply structure is provided.An LED array (71) and a reflective plate (73) are disposed sandwiching a slit (St) through which light reflected by a document MS passes and a light-guiding member (72) is disposed on the side of the LED array (71). The light-guiding member (72) includes a direct emission unit (77) disposed between an illumination range y centered on a document reading position and the LED array (71) and an indirect emission unit (78) disposed between the reflective plate (73) and the LED array (71), a light incidence face of the direct emission unit (77) and a light incidence face of the indirect emission unit (78) are disposed at mutually different position around the LED array (71), and the LED array (71) is disposed on a side of an interior angle formed by the light incidence faces.
Abstract:
An illuminating device according to an embodiment included in an image reading apparatus and an image forming apparatus includes light source portions, light-guiding members for illuminating an illumination target from an elongated light emitting face that extends in a longitudinal direction, by guiding light from the light source portions, and holding members for holding the light-guiding members. The holding members include holding portions for removably holding the light-guiding members, and tilted portions that reflect light emitted from the light emitting face, the tilted portions extending from a front end on the light emitting face side of the holding portions, obliquely widening with increasing distance from the light-guiding members.
Abstract:
An illuminating device capable of stably illuminating an irradiated object such as a document while suppressing light loss with a simply structure is provided. An LED array and a reflective plate are disposed sandwiching a slit (St) through which light reflected by a document MS passes and a light-guiding member is disposed on the side of the LED array. The light-guiding member includes a direct emission unit disposed between an illumination range y centered on a document reading position and the LED array and an indirect emission unit disposed between the reflective plate and the LED array, a light incidence face of the direct emission unit and a light incidence face of the indirect emission unit are disposed at mutually different position around the LED array, and the LED array is disposed on a side of an interior angle formed by the light incidence faces.
Abstract:
In an image forming device, a light-guiding member includes an integrated ridge extending in the longitudinal direction of the light-guiding member. The light-guiding member further includes a protrusion on the ridge. The illuminating device includes an attachment recess that holds the light-guiding member and a holder member that has a fit portion to which a protrusion is fitted. The protrusion is disposed at a position decentered to one end portion of the light-guiding member in the longitudinal direction of the light-guiding member.
Abstract:
An illuminating device capable of stably illuminating an irradiated object such as a document while suppressing light loss with a simply structure is provided. An LED array and a reflective plate are disposed sandwiching a slit (St) through which light reflected by a document MS passes and a light-guiding member is disposed on the side of the LED array. The light-guiding member includes a direct emission unit disposed between an illumination range y centered on a document reading position and the LED array and an indirect emission unit disposed between the reflective plate and the LED array, a light incidence face of the direct emission unit and a light incidence face of the indirect emission unit are disposed at mutually different position around the LED array, and the LED array is disposed on a side of an interior angle formed by the light incidence faces.
Abstract:
An image forming apparatus includes an image reading unit, an image forming unit, a discharge unit, and a discharge tray. The image reading unit is configured to read a document placed on a document placement table by moving and scanning of a scanning body in a sub-scanning direction. The image forming unit is configured to form an image read by the image reading unit on a paper sheet. The discharge unit is configured to discharge the paper sheet on which an image is formed by the image forming unit to a direction perpendicular to the sub-scanning direction. The discharge tray is on which the paper sheet from the discharge unit is to be placed with a space portion at a lower side of the image reading unit. A bottom surface of a housing of the image reading unit facing the discharge tray is constituted of a first surface and a second surface. The first surface is a surface at a front side of the discharge unit in a discharging direction and high with respect to the discharge tray. The second surface is a surface at a back side of the discharge unit in the discharging direction lower than the first surface with respect to the discharge tray. A pulling member and/or a movable wiring are/is arranged at an upper side of the second surface inside the housing. The pulling member is configured to move the scanning body back and forth in the sub-scanning direction. One end portion of the movable wiring is secured to the scanning body.