Abstract:
Provided in a light detection and ranging (LiDAR) device including a scanning optical system including a plurality of light sources and a beam steering device, the scanning optical system being configured to scan an object with a plurality of irradiation beams projected from the plurality of light sources toward the object at a plurality of irradiation angles, respectively, a light detector including a plurality of pixel regions that are configured to separately detect the plurality of irradiation beams projected toward the object at the plurality of irradiation angles and reflected from the object, and a processor configured to control the scanning optical system and the light detector, and obtain information about the object based on the plurality of irradiation beams detected by the light detector.
Abstract:
Provided are a LiDAR device and a method of operating the LiDAR device. The LiDAR device includes a light-emitting unit configured to emit modulated light onto an object, a light-receiving unit configured to receive the modulated light reflected by the object, a computation unit configured to calculate a distance to the object based on a reception signal of the modulated light provided by the light-receiving unit, a modulation unit configured to provide a modulation signal to the light-emitting unit to generate the modulated light, and a controller configured to control operations of at least one of the light-emitting unit, the light-receiving unit, the computation unit, and the modulation unit.
Abstract:
The present disclosure is directed to providing to a smart window system capable of controlling a state of a display element (e.g., at least one of transparency, color, pattern, gradation degree, and displayed information) through various kinds of input devices and a control method thereof. In accordance with one aspect of the present disclosure, a smart window system may include a display element; an input device configured to receive a control command for the display element; and a controller configured to determine at least one of transparency, color, pattern, and gradation of the display element and information displayed on the display element on the basis of the control command.
Abstract:
A touch screen panel may include a liquid crystal, a first transparent electrode and a second transparent electrode provided at both sides of the liquid crystal, and a controller configured to transfer image data to the first transparent electrode and the second transparent electrode in a first mode and sense a touch of a user on at least one of the first transparent electrode and the second transparent electrode in a second mode.
Abstract:
An induction heating fusing device and method of an image forming apparatus including: a pressure roller; a heating element that forms a fusing nip together with the pressure roller and is rotatable; an inductor that is installed in a rotation axis direction on the outer circumference surface of the heating element, includes a main coil and a plurality of control coils located on the main coil, and inductively heats the heating element; and a controller that selectively drives at least one of the plurality of control coils depending on the width of a printing paper passing though the fusing nip, and controls the main coil and the plurality of control coils so that a current direction of the main coil and a current direction of the plurality of control coils become the same as or opposite to each other depending on the width of the printing paper.
Abstract:
An induction heating type fusing device and an image forming apparatus including the fusing device. The fusing device includes a magnetic flux generator and a compressing roller outside a fusing belt, first and second fusing rollers and a nip guide inside the fusing belt. The compressing roller compresses against the first and second fusing rollers and the nip guide to form nips, while the fusing belt is disposed between the compressing roller and the first and second fusing rollers and the nip guide.
Abstract:
Provided is a light detection and ranging (LiDAR) device including a light transmitter including a plurality of light sources, each of the plurality of light sources being configured to emit light toward an object, a light receiver including a plurality of light detection elements, each of the plurality of light detection elements being configured to detect reflected light reflected from the object that is irradiated with the light emitted by the plurality of light sources, and the light receiver being configured to remove crosstalk from second detection information output by at least one light detection element of the plurality of light detection elements based on first detection information output by any one of remaining light detection elements of the plurality of light detection elements, and a processor configured to obtain information on the object based on the second detection information with the crosstalk removed.
Abstract:
An optical scanner includes at least one light source configured to emit light, a steering unit configured to perform scanning in a first direction based on the light emitted from the at least one light source, and a polygon mirror configured to perform, by using the light output from the steering unit, scanning in a second direction different than the first direction based on a rotation of the polygon mirror. The steering unit includes a plurality of first prisms, and each of the plurality of first prisms includes an incident facet configured to pass the light emitted from the at least one light source, and an output facet configured to refract and output the light. The polygon mirror includes a plurality of reflective facets, and each of the plurality of reflective facets is configured to that reflect the light output from the steering unit.
Abstract:
Provided is a beam scanning apparatus including a plurality of antenna resonators disposed two-dimensionally in a row direction and a column direction, a plurality of row voltage lines that are configured to provide a plurality of driving voltages in a row direction, respectively, a plurality of column voltage lines that are configured to provide a plurality of driving voltages in a column direction, respectively, and a driving voltage conversion circuit configured to control a driving voltage applied to each of the plurality of antenna resonators based on a driving voltage in the row direction that is provided from each of the plurality of row voltage lines and a driving voltage in the column direction that is provided from each of the plurality of column voltage lines.
Abstract:
Provided is a beam scanning apparatus including a plurality of antenna resonators disposed two-dimensionally in a row direction and a column direction, a plurality of row voltage lines that are configured to provide a plurality of driving voltages in a row direction, respectively, a plurality of column voltage lines that are configured to provide a plurality of driving voltages in a column direction, respectively, and a driving voltage conversion circuit configured to control a driving voltage applied to each of the plurality of antenna resonators based on a driving voltage in the row direction that is provided from each of the plurality of row voltage lines and a driving voltage in the column direction that is provided from each of the plurality of column voltage lines.