Abstract:
An indole-based compound represented by Formula 1 below, and an organic light-emitting diode including the indole-based compound are provided. In Formula 1, Ar1, R1 to R8, and n are the same as defined in the specification. The organic light-emitting diode with an organic layer including the indole-based compound of Formula 1 may have a low driving voltage, a high-emission efficiency, and long lifespan characteristics.
Abstract:
An organic light-emitting device and a flat panel display device, the organic-light emitting device including an anode; a cathode; and an organic layer therebetween including an emission layer, a hole transport region between the anode and the emission layer, the hole transport region including at least one of a hole injection layer, a hole transport layer, and an electron blocking layer, an electron transport region between the emission layer and the cathode, the electron transport region including at least one of a hole blocking layer, an electron transport layer, and an electron injection layer, and a buffer layer between the emission layer and the electron transport region, wherein the buffer layer includes a biscarbazole-based derivative and triphenylene-based derivative, and a triplet energy (ET1) of the biscarbazole-based derivative or the triphenylene-based derivative and a triplet energy (ET2) of a dopant of the emission layer satisfy the following relationship:
Abstract:
An organic light-emitting device and a flat panel display device, the organic-light emitting device including an anode; a cathode; and an organic layer therebetween including an emission layer, a hole transport region between the anode and the emission layer, the hole transport region including at least one of a hole injection layer, a hole transport layer, and an electron blocking layer, an electron transport region between the emission layer and the cathode, the electron transport region including at least one of a hole blocking layer, an electron transport layer, and an electron injection layer, and a buffer layer between the emission layer and the electron transport region, wherein the buffer layer includes a biscarbazole-based derivative and triphenylene-based derivative, and a triplet energy (ET1) of the biscarbazole-based derivative or the triphenylene-based derivative and a triplet energy (ET2) of a dopant of the emission layer satisfy the following relationship: E T 1 > E T 2 .
Abstract:
Embodiments of the present invention include an amine-based compound represented by Formula 1, an organic light-emitting diode including the amine-based compound, and an organic light-emitting apparatus including the amine-based compound.
Abstract:
An organic light-emitting device includes an emission layer and an electron transport layer. The emission layer includes at least one compound represented one of Formula 1, Formula 2 and/or Formula 3. The electron transport layer includes at least one compound represented by Formula 4 and/or Formula 5. An organic light-emitting device including the emission layer and the electron transport layer has high emission efficiency and an improved lifetime.
Abstract:
A display device includes a first optical resonance layer on a substrate, a switching structure on the first optical resonance layer, a first electrode on the switching structure, a light emitting structure on the first electrode, and a second electrode on the emitting structure. The switching structure may include a switching device and an optical distance controlling insulation layer covering the switching device. A first optical resonance distance for an optical resonance of the light may be provided between an upper face of the first optical resonance layer and a bottom face of the second electrode.
Abstract:
An organic light-emitting device includes an anode, a cathode, and an organic layer between the anode and the cathode, wherein the organic layer includes a mixed organic layer, and the mixed organic layer includes at least two different compounds, and a triplet energy of at least one compound of the at least two different compounds is 2.2 eV or higher. The organic light-emitting device according to embodiments of the present invention may have a low driving voltage, a high efficiency, and a long lifespan.
Abstract:
An organic light-emitting device includes a positive electrode, a negative electrode and at least one organic material layer between the positive electrode and the negative electrode. The at least one organic material layer includes a hole-injecting layer, a hole-transporting layer, an emission layer, an electron-transporting layer, and an electron-injecting layer, and the emission layer includes a host material and a dopant material. In addition, a lifetime enhancement layer including a bipolar compound is positioned between the emission layer and the electron-transporting layer.
Abstract:
A condensed cyclic compound represented by Formula 1 below and an organic light-emitting device (OLED) including the condensed cyclic compound are presented. Ar1 and Ar2 in Formula 1 are each independently one of a hydrogen atom, an aryl or heteroaryl group and an arylamino group, at least one of Ar1 and Ar2 being a substituted or unsubstituted 1,2,4-triazol-4-yl group; L1 and L2 in Formula 1 are linking groups, each independently one of a cyclic or noncyclic, saturated or unsaturated hydrocarbon group and a heteroarylene group; a and b in Formula 1 are each independently one of 0 or 1; and R1 to R8 in Formula 1 being each independently one of a variety of inorganic and organic substituents including cyclic or noncyclic, saturated or unsaturated and aromatic, nonaromatic or heteraromatic groups. The OLED may have a low driving voltage, a high emission efficiency and long lifespan characteristics.