Abstract:
A gate driver circuit includes an N-th stage (‘N’ is a natural number) The N-th stage (‘N’ is a natural number) includes a pull-up part configured to output an N-th gate signal using a first clock signal in response to a node signal of the control node, a carry part configured to output an N-th carry signal using the first clock signal in response to the node signal of the control node, an first output part connected to an n-th gate line and configured to output an n-th gate signal using the N-th gate signal in response to a second clock signal having a period shorter than the first clock signal (‘n’ is a natural number), and a second output part connected to an (n+1)-th gate line and configured to output an (n+1)-th gate signal using the N-th gate signal in response to an second inversion clock signal having a phase opposite to the second clock signal.
Abstract:
A liquid crystal display includes a first substrate, gate lines and data lines disposed on a display area of the first substrate, a common voltage line disposed on a peripheral area of the first substrate, a common voltage transmission unit extending from the common voltage line, an organic layer disposed on the common voltage transmission unit and the common voltage line, a connecting member disposed on the organic layer disposed on the peripheral area, a first insulating layer disposed on the pixel electrode and the connecting member, a common electrode disposed on the first insulating layer, and a short point connecting the connecting member and the common electrode to each other. The common electrode and the first insulating layer include a plurality of cutouts in the peripheral region and display region of the first substrate which have substantially a same plane shape as each other.
Abstract:
A stage circuit includes a first driver, a second driver, a first output unit, a second output unit and a controller. The first driver controls voltages of first and second nodes, according to a first power source, a third power source, a start signal or a carry signal of a previous stage input to a first input terminal, and a clock signal supplied to a second input terminal. The second driver controls voltages of third and fourth nodes, according to voltages of the first power source, the third power source, the first input terminal and the first and second nodes. The first output unit outputs a carry signal to a first output terminal, according to voltages of the first power source, the second input terminal and the third and fourth nodes. The second output unit outputs a scan signal to a second output terminal, according to voltages of the second power source, the second input terminal and the third and fourth nodes. The controller is electrically coupled to the first output terminal and the second driver.
Abstract:
A stage circuit includes a first driver, a second driver, a first output unit and a second output unit. The first driver controls voltages of first and second nodes, according to a first power source, a start signal or a carry signal of a previous stage supplied to a first input terminal, a first clock signal supplied to a second input terminal, and a second clock signal supplied to a third input terminal. The second driver controls a voltage of a third node, according to the first power source, a start signal or a carry signal of a previous stage supplied to a first input terminal, a carry signal of a next stage supplied to a fourth input terminal, and the voltage of the second node.
Abstract:
A gate driving circuit includes a pull-up control part, a pull-up part, a carry part, a first pull-down part and a second pull-down part. The pull-up control part applies a carry signal from a previous stage to a first node. The pull-up part outputs an N-th gate output signal based on a clock signal. The carry part outputs an N-th carry signal based on the clock signal in response to the signal applied to the first node. The first pull-down part includes a plurality of transistors connected to each other in series. The first pull-down part pulls down a signal at the first node to a second off voltage in response to a carry signal of a next stage. The second pull-down part pulls down the N-th gate output signal to a first off voltage in response to the carry signal of the next stage.
Abstract:
In a liquid crystal display one pixel is divided into two subpixels, the two subpixels are connected to two subdata lines extending from one data line, and a desired data voltage is applied by using a data driving switching element connected to the subdata line, thereby reducing the number of data lines needed to reduce the cost of the driver and preventing a lack of space to mount the data driver while dividing one pixel into two subpixels and differently applying voltages of the two subpixels.
Abstract:
A gate driving circuit includes a pull-up control part, a pull-up part, a carry part, a first pull-down part and a second pull-down part. The pull-up control part applies a carry signal from a previous stage to a first node. The pull-up part outputs an N-th gate output signal based on a clock signal. The carry part outputs an N-th carry signal based on the clock signal in response to the signal applied to the first node. The first pull-down part includes a plurality of transistors connected to each other in series. The first pull-down part pulls down a signal at the first node to a second off voltage in response to a carry signal of a next stage. The second pull-down part pulls down the N-th gate output signal to a first off voltage in response to the carry signal of the next stage.