Abstract:
A LCD device includes a first substrate, a second substrate, and a liquid crystal layer between the first substrate and the second substrate. A gate line is disposed on the first substrate. The gate line extends in a first direction. A plurality of data lines extend in a second direction intersecting the first direction. A thin film transistor of a plurality of thin film transistors is disposed at an intersection area between each of the plurality of data lines and the gate line. First, second and third pixel electrodes are sequentially arranged in the first direction. Each of the first, second and third pixel electrodes are respectively connected to one of the thin film transistors. At least two data lines are disposed between the second pixel electrode and the third pixel electrode, and at least one data line is disposed between the second pixel electrode and the first pixel electrode.
Abstract:
A method of manufacturing a display panel is provided. The method includes preparing a mother panel, disposing a wheel unit on the mother panel, and cutting the mother panel along a plurality of cutting lines using the wheel unit. The mother panel includes a boundary of the mother panel and a plurality of unit panels within the boundary. Each of the plurality of unit panels includes a first substrate, a second substrate facing the first substrate, a display area, and a sealant. The sealant is disposed between the first and second substrates to couple the first and second substrates. The wheel unit applies different pressures to the first and second substrates to cut the first and second substrates when the mother panel is cut.
Abstract:
A display apparatus includes a first substrate in which a plurality of pixel areas and a non-pixel area around the pixel areas are defined, a cavity-defining layer disposed on the first substrate and defining a plurality of cavities corresponding to the pixel areas, an insulating layer disposed on the cavity-defining layer and in the cavities, a liquid crystal layer disposed on the insulating layer in the cavities, and a second substrate disposed on the insulating layer to cover the liquid crystal layer. The liquid crystal layer has a same refractive index as the cavity-defining layer when the liquid crystal layer is not driven. The liquid crystal layer has a greater refractive index than the cavity-defining layer when the liquid crystal layer is driven.
Abstract:
A color conversion substrate and a display device including the same. The color conversion substrate includes a color filter layer having a plurality of color filters, and a color conversion layer disposed on the color filter layer. The color conversion layer includes a plurality of dams, and a plurality of conversion parts disposed between the dams. A reflection layer is disposed on the dams, and a hydrophobic area is disposed on the reflection layer, overlapping an upper surface of the dams, and non-overlapping a side surface of the dams. The display device further includes a light source configured to output a first color light to the color conversion substrate.
Abstract:
Provided is a reflective liquid crystal display device of an embodiment, including a plurality of pixel areas having a blue pixel area and a white pixel area adjacent to each other in a first direction, wherein the blue pixel area includes a first blue pixel part including a first pixel electrode and a first blue filter that overlaps the first pixel electrode, and a second blue pixel part including a second blue filter that does not overlap the first pixel electrode, wherein the white pixel area includes a first sub-white pixel part including a second pixel electrode and a third blue filter that overlaps the second pixel electrode, a second sub-white pixel part disposed between the second blue pixel part and the first sub-white pixel part and including the third blue filter, and a first white pixel part adjacent to the first sub-white pixel part and including the second pixel electrode and a first white filter that overlaps the second pixel electrode, which may improve the color sense for white light.
Abstract:
A display device includes a first substrate, a thin film transistor on the first substrate, a passivation layer on the thin film transistor, a reflective layer on the passivation layer, a color filter on the reflective layer, the reflective layer having a substantially same shape as that of the color filter in a plan view, a first insulating layer on the color filter, a pixel electrode on the first insulating layer, a second substrate opposing the first substrate, and a liquid crystal layer between the first substrate and the second substrate.
Abstract:
The display device includes a plurality of gate lines extending in a first direction, a plurality of data lines extending in a second direction intersecting the first direction, and a plurality of pixels connected to the gate lines and the data lines. A plurality of dots is defined by the pixels, each of the dots includes first to fourth pixels in a same pixel column arranged in the second direction, and the first to fourth pixels display first to fourth colors, respectively. The first to fourth pixels are connected to two or three gate lines among the gate lines. Three pixels among the first to fourth pixels have a same polarity, and the remaining one pixel among the first to fourth pixels has a different polarity than the three pixels.
Abstract:
A display device includes a first pixel group having first, second, third, and fourth pixels arranged along a column direction, and a second pixel group having fifth, sixth, seventh, and eighth pixels arranged along the column direction. A gate line is connected to the first, second, third, fourth, fifth, sixth, seventh, and eighth pixels. A first data line is connected to the first pixel, the third pixel, the fourth pixel, and the sixth pixel, and a second data line is connected to the second pixel, the fifth pixel, the seventh pixel, and the eighth pixel. The first pixel group and the second pixel group are alternately disposed along a row direction. This arrangement allows inversion driving wherein the first data line receives a voltage having a different polarity from that of the second data line so as to reduce line flickering and reduce power consumption in the display device.
Abstract:
A display device includes a substrate including first, second, third, and fourth pixel areas, first, second, and third color filters at the first, second, and third pixel areas on the substrate, respectively, and a fourth color filter at the fourth pixel area on the substrate, the fourth color filter having a plurality of holes, wherein the plurality of holes includes a first hole, a second hole, and a third hole adjacent to each other, and wherein a first imaginary straight line passing through a center of the first hole and a center of the second hole has an angle in a range from about 20 degrees to about 80 degrees with respect to a second imaginary straight line passing through the center of the first hole and a center of the third hole.
Abstract:
A display device, including a first substrate including at least one pixel, each pixel including first, second, third, and fourth pixels; a second substrate opposing the first substrate; and first, second, and third color filters on the second substrate corresponding to the first, second, and third pixels, respectively, the first, second, and third color filters, respectively, overlapping portions of the fourth pixel, the fourth pixel being adjacent to the first, second, and third color filters.