Abstract:
A display device includes pixels, gate lines, and data lines on a substrate. The pixels include sub-pixels, and each sub-pixel includes a respective one of a plurality of first electrodes connected to one of the gate lines and one of the data lines. The first electrode of the sub-pixel at an n-th row and the first electrode of the sub-pixel at an (n+2)-th row in a same column are connected to different ones of the data lines. The sub-pixels in the n-th and (n+2)-th rows in the same column emit the same color of light.
Abstract:
A display device includes a display area including a gate line and a data line and a gate driver connected to an end of the gate line, the gate driver including at least one stages integrated on a substrate configured to output a gate voltage, in which the stage includes an inverter unit and an output unit, in which the output unit includes a first transistor and a first capacitor. The first transistor includes an input terminal applied with a clock signal, a control terminal connected to the node Q, and an output terminal connected to a gate voltage output terminal through which the gate voltage is output. An inverter voltage output from the inverter is lower than the low voltage of the gate voltage output by the output unit.
Abstract:
A gate driving circuit and a display apparatus having the gate driving circuit, in which the gate driving circuit includes a voltage adjusting part using a low clock signal to increase the reliability of the gate driving circuit, thereby extending the lifetime of the gate driving circuit.
Abstract:
A display device includes a substrate, first and second transistors on the substrate, a first electrode connected to one of the first and second transistors, a second electrode facing the first electrode, and a light emission member between the first and second electrodes, where the first transistor includes a first channel including a polycrystalline semiconductor member on the substrate, a first source electrode and a first drain electrode at respective opposite sides of the first channel, a first gate electrode overlapping the first channel, and a first insulating layer covering the first gate electrode, the second transistor includes a second gate electrode on the first insulating layer, a second channel including an oxide semiconductor member on the second gate electrode, second source and drain electrodes on the second channel, and an external light blocking member on the second source and drain electrodes and overlapping the second channel.
Abstract:
A stage circuit includes a first driver, a second driver, a first output unit, a second output unit and a controller. The first driver controls voltages of first and second nodes, according to a first power source, a third power source, a start signal or a carry signal of a previous stage input to a first input terminal, and a clock signal supplied to a second input terminal. The second driver controls voltages of third and fourth nodes, according to voltages of the first power source, the third power source, the first input terminal and the first and second nodes. The first output unit outputs a carry signal to a first output terminal, according to voltages of the first power source, the second input terminal and the third and fourth nodes. The second output unit outputs a scan signal to a second output terminal, according to voltages of the second power source, the second input terminal and the third and fourth nodes. The controller is electrically coupled to the first output terminal and the second driver.
Abstract:
A stage circuit includes a first driver, a second driver, a first output unit, a second output unit and a controller. The first driver controls voltages of first and second nodes, according to a first power source, a third power source, a start signal or a carry signal of a previous stage input to a first input terminal, and a clock signal supplied to a second input terminal. The second driver controls voltages of third and fourth nodes, according to voltages of the first power source, the third power source, the first input terminal and the first and second nodes. The first output unit outputs a carry signal to a first output terminal, according to voltages of the first power source, the second input terminal and the third and fourth nodes. The second output unit outputs a scan signal to a second output terminal, according to voltages of the second power source, the second input terminal and the third and fourth nodes. The controller is electrically coupled to the first output terminal and the second driver.
Abstract:
There is provided a display device including a display including a first pixel connected to a first data line and a second pixel connected to a second data line, a data signal generator configured to generate an output signal, and a signal divider configured to divide the output signal, to generate a first data signal and a second data signal, and to apply the first data signal and the second data signal to the first data line and the second data line, respectively, wherein the data signal generator is configured to generate the output signal based on a coupling effect of a first parasitic capacitor formed between the first data line and the second data line and a coupling effect of a parasitic capacitor of a data line formed by the first data line and second data line.
Abstract:
A stage circuit includes a first driver, a second driver, a first output unit and a second output unit. The first driver controls voltages of first and second nodes, according to a first power source, a start signal or a carry signal of a previous stage supplied to a first input terminal, a first clock signal supplied to a second input terminal, and a second clock signal supplied to a third input terminal. The second driver controls a voltage of a third node, according to the first power source, a start signal or a carry signal of a previous stage supplied to a first input terminal, a carry signal of a next stage supplied to a fourth input terminal, and the voltage of the second node.
Abstract:
A gate driving circuit includes: a pull-up controller applying a carry signal of one of previous stages to a first node in response to the carry signal of the one of the previous stages; a pull-up part outputting a clock signal as an N-th gate output signal; a carry part outputting the clock signal as an N-th carry signal; a first pull-down part pulling down the signal at the first node to a second off voltage; a second pull-down part pulling down the N-th gate output signal to a first off voltage; an inverting part generating an inverting signal based on the clock signal and the second off voltage to output the inverting signal to an inverting node; and a reset part outputting a reset signal to the inverting node.
Abstract:
A display device includes a substrate, first and second transistors on the substrate, a first electrode connected to one of the first and second transistors, a second electrode facing the first electrode, and a light emission member between the first and second electrodes, where the first transistor includes a first channel including a polycrystalline semiconductor member on the substrate, a first source electrode and a first drain electrode at respective opposite sides of the first channel, a first gate electrode overlapping the first channel, and a first insulating layer covering the first gate electrode, the second transistor includes a second gate electrode on the first insulating layer, a second channel including an oxide semiconductor member on the second gate electrode, second source and drain electrodes on the second channel, and an external light blocking member on the second source and drain electrodes and overlapping the second channel.