Abstract:
A method of manufacturing a display substrate includes forming a first color filter on a base substrate in a first region, forming a second color filter on the base substrate in a second region, forming an organic layer on the base substrate, the first color filter and the second color filter, forming a third color filter on the organic layer in a third region and forming an overcoat layer on the organic layer and the third color filter.
Abstract:
A display device includes: a first base layer; a circuit element layer on the first base layer; a pixel definition layer on the circuit element layer and comprising a plurality of light-emitting openings which are spaced apart from each other and define a plurality of light-emitting regions; a second base layer spaced apart from and facing the first base layer; a light-shielding layer on the second base layer and comprising a plurality of openings respectively overlapping the light-emitting regions, wherein on a plane of the first base layer, shapes of first to third openings along one direction among the openings are different from each other.
Abstract:
A display device includes: a first substrate; a second substrate on the first substrate; a pixel between the first substrate and the second substrate and including a pixel area and a non-pixel area around the pixel area; a color filter between the pixel and the second substrate and overlapping with the pixel area; and a plurality of protrusions between the second substrate and the color filter, and each of the protrusions has a width that decreases as a distance from the second substrate increases.
Abstract:
A display device including a base layer including a thin film transistor, a pixel definition layer including an opening, first to third organic light emitting elements each including a first electrode, a second electrode, and a light emitting layer therebetween, an encapsulation member including a first inorganic layer covering the organic light emitting elements, a second inorganic layer disposed thereon, a first color conversion pattern disposed between the inorganic layers and overlapping the first organic light emitting element, and a second color conversion pattern disposed between the inorganic layers and overlapping the second organic light emitting element, and first and second color filter patterns having different colors from each other and overlapping the first and second color conversion patterns, respectively, in which colors of light emitted from the first and second color conversion patterns are substantially the same as colors of the first and second color filter patterns, respectively.
Abstract:
Exemplary embodiments relate to a display device, an optical mask, and a method for manufacturing a display device using the same. The display device including: a first substrate and a second substrate facing the first substrate; a thin film transistor disposed on the first substrate; a first insulating layer disposed on the thin film transistor; and a light blocking member disposed on the first insulating layer. The light blocking member includes a spacer for maintaining a cell gap between the first substrate and the second substrate and a main light blocking portion having an upper surface that is lower than an upper surface of the spacer, and the light blocking member further includes a furrow at a border between the spacer and the main light blocking portion, the furrow having a surface lower than the upper surface of the main light blocking portion.
Abstract:
Provided is an LCD device including a first substrate, a second substrate, a liquid crystal layer, a main spacer, and a supplementary spacer. The liquid crystal layer is interposed between the first and second substrates. The main spacer makes contact with the first and second substrates. The supplementary spacer makes contact with one of the first and second substrates and is spaced apart from the other. A first area ratio defined by dividing the area of a first top surface by that of a first bottom surface of the main spacer may be smaller than a second area ratio defined by dividing the area of a second top surface by that of a second bottom surface of the supplementary spacer.
Abstract:
A color filter substrate includes a plurality of color filters and a first dummy pattern. The color filters are formed in a display area. The color filters include a plurality of colors. The first dummy pattern is formed in a peripheral area surrounding the display area. The first dummy pattern has a color identical to one of the colors. An edge portion of the first dummy pattern corresponding to an apex of the display area is rounded. Therefore, the reliability of a color filter manufacturing process may be improved, the reliability of the color filter may be improved, and the generation of stain defects having a radial shape may be prevented, so that display quality may be improved.
Abstract:
A mask includes a substantially transparent portion. The mask further includes a halftone portion abutting the substantially transparent portion, a light transmittance of the halftone portion being greater than 0% and less than 100%. The mask further includes a blocking portion abutting the halftone portion, a light transmittance of the blocking portion being less than the light transmittance of the halftone portion.
Abstract:
A method of manufacturing a display substrate includes forming a first color filter on a base substrate in a first region, forming a second color filter on the base substrate in a second region, forming an organic layer on the base substrate, the first color filter and the second color filter, forming a third color filter on the organic layer in a third region and forming an overcoat layer on the organic layer and the third color filter.