Abstract:
A display device includes: a display panel; and a gate driving circuit, a kth driving stage from among driving stages for outputting a kth gate signal from among gate signals, where k is a natural number of two or more, including: at least one output transistor including a control electrode connected to a first node, an input electrode to receive a clock signal, and an output electrode to output an output signal; a first control transistor to output an activation signal to the first node before the kth gate signal is outputted; a capacitor to boost a voltage of the first node after the activation signal is provided to the first node; second and third control transistors connected in series between the first node and a voltage input terminal; and a first intermediate node between the second control transistor and the third control transistor for receiving the output signal.
Abstract:
Provided is a method of manufacturing TFT substrate, the method including: forming a first conductive layer and a gate electrode; forming a gate insulating layer covering the first conductive layer and the gate electrode; forming a first contact hole exposing the first conductive layer through the gate insulating layer; forming, on the gate insulating layer of a pixel area, an oxide semiconductor pattern comprising a first region which is conductive, a second region which is conductive, and a third region between the first region and the second region; forming a source electrode contacting the first region of the oxide semiconductor pattern, a drain electrode contacting the second region of the oxide semiconductor pattern and a second conductive layer contacting the first conductive layer on a non-pixel area. Each of the first region and the second region overlaps the gate electrode.
Abstract:
Provided is a display device. The display device includes a display panel comprising a plurality of pixels respectively connected to a plurality of gate lines and first and second data lines, a gate driving circuit configured to driving the plurality of gate lines, a data driving circuit configured to output a data output signal to a data output terminal in response to a data signal, and a driving controller configured to provide the data signal to the data driving circuit and control the gate driving circuit.
Abstract:
An organic light emitting display device includes a plurality of pixels. Each of the pixels includes an organic light emitting diode, first to third transistors, a storage capacitor, and a first capacitor. The second transistor includes a gate electrode receiving a first scan signal, a first electrode receiving a data signal, and a second electrode connected to a first electrode of the first transistor. The third transistor includes a gate electrode receiving a second scan signal, a first electrode connected to a second electrode of the first transistor, and a second electrode connected to a gate electrode of the first transistor. The storage capacitor includes a first electrode receiving a power voltage and a second electrode connected to the gate electrode of the first transistor. The first capacitor includes a first electrode connected to the gate electrode of the third transistor and a second electrode receiving the power voltage.
Abstract:
A gate driving circuit in a display device includes a plurality of stages connected in cascade. An ith stage from among the plurality of stages includes a first output unit, a control unit, a pull-down unit, and an inverter unit. The first output unit includes a first output transistor including a first control electrode, a second control electrode overlapping with the first control electrode, an input electrode, and an output electrode. A signal outputted from an inverter unit of an i−1th stage is applied to the second control electrode.
Abstract:
There is provided a display device including a display panel including a gate line operated by a gate signal, a clock source configured to apply a clock signal, a shift register including a stage, the stage including at least one switching element and being configured to generate the gate signal based on the clock signal applied from the clock source, and a control-voltage generator configured to generate a control voltage based on a current generated from at least one of the shift register and the clock source and to apply the control voltage to the at least one switching element.
Abstract:
A display device includes: a substrate; a thin film transistor disposed on the substrate and including a semiconductor layer; an auxiliary line disposed on the substrate and including a same material as a material as that of the semiconductor layer; a gate line and a data line disposed on the substrate and connected to the thin film transistor: a first insulating layer disposed between the gate line and the auxiliary line, the first insulating layer defining a first contact hole which exposes the gate line; and a first electrode connected to the thin film transistor. The gate line contacts the auxiliary line including the same material as that of the semiconductor layer, at the first contact hole.
Abstract:
A display apparatus includes a plurality of gate lines, a plurality of data lines, wherein the plurality of data lines includes a plurality of first and second data line pairs, a plurality of pixels connected to the gate lines and the data lines, driving lines connected to the second data lines, a plurality of switching elements connected to the first data lines and the driving lines, and a plurality of dummy elements respectively connected to a corresponding pair of the first and second data lines, wherein the switching elements and the dummy elements are turned on in response to a switching signal.
Abstract:
Provided is a method of manufacturing TFT substrate, the method including: forming a first conductive layer and a gate electrode; forming a gate insulating layer covering the first conductive layer and the gate electrode; forming a first contact hole exposing the first conductive layer through the gate insulating layer; forming, on the gate insulating layer of a pixel area, an oxide semiconductor pattern comprising a first region which is conductive, a second region which is conductive, and a third region between the first region and the second region; forming a source electrode contacting the first region of the oxide semiconductor pattern, a drain electrode contacting the second region of the oxide semiconductor pattern and a second conductive layer contacting the first conductive layer on a non-pixel area. Each of the first region and the second region overlaps the gate electrode.
Abstract:
An image processing device includes a first filter that filters the image signal to output a first image signal, a second filter that converts the image signal corresponding to a predetermined pixel to a second image signal based on image signals corresponding to a plurality of peripheral pixels adjacent to the predetermined pixel, a third filter that filters the second image signal from the second filter to output a third image signal, a fourth filter that filters the third image signal from the third filter to output a fourth image signal, and an image synthesizer that synthesizes the first image signal from the first filter and the fourth image signal from the fourth filter.