Abstract:
An image driving method includes receiving basic image data including a first set of primary colors. The basic image data is transformed into output image data including a second set of primary colors. Luminance values of the second set of primary colors of the output image data is reduced to compensate the luminance values of the second set of primary colors of the output image data when a luminance value of the first set of primary color of the basic image data is saturated. Image distortion is thereby minimized or prevented.
Abstract:
Disclosed is a display apparatus including: a display panel including a plurality of pixels each for displaying an image corresponding to a data signal; and a timing controller configured to receive an image signals and to convert the image signal into the data signal to be supplied to the display panel, wherein the timing controller is further configured to convert the image signal into an intermediate data signal and to generate the data signal, which corresponds to a k-th pixel, on a basis of intermediate data signals corresponding to a (k−1)-th pixel, the k-th pixel and a (k+1)-th pixel of the plurality of pixels, wherein the data signal corresponding to a first pixel of the plurality of pixels includes first and second color signals and the data signal corresponding to a second pixel of the plurality of pixels includes third and fourth color signals.
Abstract:
A stage of a gate driving circuit includes: a first control transistor diode-connected between a first input end of the stage and a first node, biased by a first input signal, and back-biased by a second input signal; a second control transistor including a control end which receives a third input signal, a first end connected to the first node, and a second end connected to a first voltage, and back-biased by a fourth input signal; a first output transistor including a control end connected to the first node, a first end connected to a clock input end of the stage, and a second end connected to a first output end of the stage; and a capacitor connected between the control and second ends of the first output transistor. The second input signal and the fourth input signal have enable levels during different periods.
Abstract:
A display apparatus includes a frame memory storing an input image signal having first and second reference blank durations respectively corresponding to a first frame and a second frame. A blank controller circuit determines a second delay blank duration based on the first and second reference blank durations and a first delay blank duration, a signal delay part generates an output image signal having the first and second delay blank durations corresponding to the first frame and second frame, respectively, is based on the stored input image signal, and a display panel displays an image based on the output image signal. The display apparatus may reduce or prevent flicker caused by variations in driving frequency that may be variable on a per-frame basis. A blank duration of a frame is controller, or a frame may be inserted in a blank duration based on blank durations of adjacent frames.
Abstract:
A display panel driving apparatus includes a data driving part, a comparing part, a data signal controlling part, and a gate driving part. The data driving part generates a dummy data signal in response to dummy image data, outputs the dummy data signal to a dummy data line of a display panel, generates a data signal in response to image data, and outputs the data signal to a data line of the display panel. The comparing part outputs a comparison signal in response to the dummy data signal and a delayed dummy data signal generated due to a load of the dummy data line. The comparison signal indicates how much the delayed dummy data signal is delayed with respect to the dummy data signal. The data signal controlling part controls the data signal using the comparison signal.
Abstract:
A display apparatus includes a liquid crystal panel including gate lines, data lines, and pixels, a gate driver, a data driver, and a timing controller. The pixels include first and second pixels. The first and second pixels are arranged in pixel rows adjacent to each other, arranged in different pixel columns, connected to the same gate line, display the same color, and receive data voltages having different polarities from each other. The image data include first pixel data displayed in the first pixels and second pixel data displayed in the second pixels. When the first pixel data have a first grayscale value and the second pixel data have a second grayscale value different from the first grayscale value, the timing controller modulates the first and second pixel data to allow the first and second pixel data to have a grayscale value between the first and second grayscale values.
Abstract:
A display apparatus includes a display panel, a timing controller, a gate driver, and a data driver. The display panel includes a plurality of pixel groups. Each of the pixel groups includes a first pixel and a second pixel disposed adjacent to the first pixel. The first and second pixels together include n (n is an odd number equal to or greater than 3) sub-pixels. The first and second pixels share their collective {(n+1)/2}th sub-pixel.
Abstract:
A display apparatus includes: a display panel including a first display area and a second display area; a first control driver configured to receive first data signals, control the display panel to display images on the first display area, and generate a first histogram corresponding to the first data signals; a second control driver configured to receive second data signals, control the display panel to display images on the second display area, and generate a second histogram corresponding to the second data signals; and a backlight unit configured to supply light to the display panel. The first control driver is further configured to receive the second histogram from the second control driver and generate a backlight control signal for controlling luminance of the backlight unit based on the first and second histograms.
Abstract:
A method of driving a light source includes outputting a light source driving signal and outputting a delayed driving signal. The light source driving signal drives a light source based on image data. The delayed driving signal is generated by delaying the light source driving signal based on a vertical sync signal having a frame period of the image data and a data enable signal having a horizontal line period of the image data.
Abstract:
A method of displaying an image on a display panel including pixels arranged in an m-by-n matrix (m and n being natural numbers), including measuring a complexity of image data based on an entropy or a most significant bit, the image data including a plurality of unit data corresponding to the pixels; and adjusting the amount of light supplied by a backlight unit according to the measured complexity of the image data.