Abstract:
An organic light emitting diode (OLED) display is disclosed. In one aspect, the display includes a substrate having a light emission area and a non-emission area outside the light emission area, an organic light emitting unit formed on the light emission area and a blocking unit that is disposed on the non-emission area to surround the organic light emitting unit. The OLED display further includes a coating unit formed to coat an external surface of the blocking unit and an encapsulation unit formed by alternately stacking at least one first thin film and at least one second thin film on an area surrounded by the blocking unit so as to encapsulate the organic light emitting unit.
Abstract:
An organic light emitting diode (OLED) display including: a substrate; an organic light emitting diode formed on the substrate; a metal oxide layer formed on the substrate and covering the organic light emitting diode; a first inorganic layer formed on the substrate and covering the organic light emitting diode; a second inorganic layer formed on the first inorganic layer and contacting the first inorganic layer at an edge of the second inorganic layer; an organic layer formed on the second inorganic layer and covering a relatively smaller area than the second inorganic layer; and a third inorganic layer formed on the organic layer, covering a relatively larger area than the organic layer, and contacting the first inorganic layer and the second inorganic layer at an edge of the third inorganic layer.
Abstract:
A vapor deposition apparatus includes a stage on which a substrate is mounted; a heater unit that is disposed at a side of the stage and includes a first heater and a second heater, wherein the first heater and the second heater are movable so that the first heater and the second heater are spaced apart from each other or are disposed adjacent to each other; and a nozzle unit that is disposed at a side opposite to the side at which the heater unit is disposed about the stage and includes one or more nozzles.
Abstract:
Organic light-emitting displays and methods of manufacturing the same are disclosed. An organic light-emitting display includes a substrate; a display panel provided on the substrate, the display panel having an emission area in which an organic light-emitting device is provided and a non-emission area that separates the emission area; and a color-changing material layer provided on the display panel, wherein the color-changing material layer includes a light-transmission part corresponding to the emission area and a light-blocking part corresponding to the non-emission area.
Abstract:
An organic light-emitting display apparatus and a method of manufacturing the same are provided. The organic light-emitting display apparatus includes a substrate, an organic light-emitting device on the substrate, an encapsulation layer covering the organic light-emitting device, and a low adhesive layer covering the encapsulation layer.
Abstract:
A flexible display panel and a method of manufacturing the same. The flexible display panel includes: a flexible panel including a display region and a non-display region, wherein the display region includes an organic light emitting device; a planarization layer disposed on the flexible panel; and a metal-dielectric layer disposed on the planarization layer and including a metal layer and a dielectric layer.
Abstract:
An organic light emitting diode (OLED) display includes: a substrate; an organic light emitting diode formed on the substrate; a metal oxide layer formed on the substrate and covering the organic light emitting diode; a first inorganic layer formed on the metal oxide layer and covering a relatively larger area than the metal oxide layer; a first organic layer formed on the first inorganic layer and covering a relatively smaller area than the first inorganic layer; and a second inorganic layer formed on the first organic layer, covering a relatively larger area than the first organic layer, and contacting the first inorganic layer at an edge of the second inorganic layer.
Abstract:
A flexible display apparatus includes a flexible substrate; a display layer on the flexible substrate and including a plurality of pixels; a cover layer which covers the display layer; a heating electrode layer on a surface of the flexible substrate opposite to the display layer, between the flexible substrate and the display layer, between the display layer and the cover layer, or on a surface of the cover layer opposite to the display layer; and a temperature sensing unit configured to sense an external temperature to the flexible display apparatus.
Abstract:
An organic light-emitting display apparatus and a method of manufacturing the same are provided. The organic light-emitting display apparatus includes a substrate, an organic light-emitting device on the substrate, an encapsulation layer covering the organic light-emitting device, and a low adhesive layer covering the encapsulation layer.
Abstract:
A vapor deposition apparatus including a first region including a first injection unit configured to inject a first raw material, and a second region including a second injection unit configured to inject a second raw material, wherein the second injection unit includes a plasma generation unit, wherein the plasma generation unit includes a plasma generator, a corresponding surface surrounding the plasma generator, and a plasma generation space between the plasma generator and the corresponding surface, and wherein the plasma generator has a groove in a lengthwise direction of the plasma generator.