Abstract:
Described herein is a low profile radiator (LPR) manufactured using additive manufacturing technology (AMT). Such an AMT radiator is suitable for use in an array antenna which may be fabricated using AMT manufacturing processes.
Abstract:
A method of manufacturing a power divider circuit includes milling a conductive material disposed upon a first substrate to form a signal trace. The signal trace includes a division from a single trace to two arm traces, with each of the two arm traces having a proximal end electrically connected to the single trace and a distal end electrically connected to each of two secondary traces. The method further includes depositing a resistive ink between the two distal ends to form a resistive electrical connection between the two arm traces, bonding a second substrate to the first substrate to substantially encapsulate the traces between the first substrate and the second substrate, and milling through at least one of the first substrate or the second substrate to provide access to at least one of the traces. A signal divider is further disclosed.
Abstract:
A stripline radio-frequency (RF) connection interface is provided and includes first and second printed circuit boards (PCBs). The first PCB includes a first trace, ground planes at opposite sides of the first trace, dielectric material interposed between the first trace and the ground planes and a first end. The first end is formed as a first rabbet at which the first trace is exposed. The second PCB includes a second trace, ground planes at opposite sides of the second trace, dielectric material interposed between the second trace and the ground planes and a second end. The second end is formed as a second rabbet, which is substantially identical to the first rabbet, at which the second trace is exposed. The first and second ends are mated in a shiplap joint to electrically couple the first and second traces.
Abstract:
Methods and apparatus for a dual polarization super-element radiator assembly. In one embodiment, an assembly comprises a first waveguide, a series of slot couplers formed in the first waveguide, first and second conductive strips, a second waveguide adjacent to the first waveguide, a series of notches formed in a conductive material extending along or parallel to the longitudinal axis of the second waveguide, the notches having respective throats, a series of slots located proximate the notch throats, and a third conductive strip disposed over and aligned with the notches, wherein the slot couplers and the notches provide a dual polarization super-element radiator.
Abstract:
A compressible dielectric standoff configured to mount at least one antenna on a ground plane of an antenna assembly includes a ground plane end configured to contact the ground plane and at least one antenna end configured to contact the at least one antenna. The compressible dielectric standoff is movable between a compressed state in which the ground plane end is spaced apart from the at least one antenna end a first distance, and an expanded state in which the ground plane end is spaced apart from the at least one antenna end a second distance. The first distance is smaller than the second distance.
Abstract:
Described herein is an apparatus and a method for an antenna array calibration device and method. The device comprises a radio frequency/optical (RF/optical) data center having at least one optical input/output; N single mode fibers (SMF) each having a proximal end connected to the at least one optical input/output of the RF/optical data center and a distal end, where N is a positive integer; N optical/RF dish calibrators each having an optical input/output connected to the distal end of the at least one SMF input/output; N coaxial transmission lines each having a proximal end connected to one of the RF input/output of the N optical/RF dish calibrators and a distal end; and N dish antennas each connected to the distal end of one of the N coaxial transmission lines.
Abstract:
A compressible dielectric standoff configured to mount at least one antenna on a ground plane of an antenna assembly includes a ground plane end configured to contact the ground plane and at least one antenna end configured to contact the at least one antenna. The compressible dielectric standoff is movable between a compressed state in which the ground plane end is spaced apart from the at least one antenna end a first distance, and an expanded state in which the ground plane end is spaced apart from the at least one antenna end a second distance. The first distance is smaller than the second distance.
Abstract:
A dual band frequency selective radiator array includes a high band radiator array disposed on a dielectric layer for transmitting and receiving high band radar signals; a low band radiator array disposed on a front side of the high band radiator array for transmitting and receiving low band radar signals; a frequency selective surface (FSS) tuned to the high band radar signals forming a surface of the low band radiator array and passes the high band radar signals to the high band radiator array; and a single aperture disposed in front of the low band radiator array, the high band radiator array and the FSS for both the low band radiator array and the high band radiator array for transmitting and receiving the radar signals.
Abstract:
The concepts, systems, circuits and techniques described herein are directed toward a spiral antenna which may be provided using additive manufacturing technology so as to provide an antenna capable of operation at frequencies which are higher than spiral antennas manufactured using standard photo-etch or printed circuit board (PCB) manufacturing processes.
Abstract:
Methods and apparatus for providing a cavity defined by conductive walls, a printed circuit board (PCB) within the cavity, and shorting posts extending into the cavity to suppress higher order modes generated by operation of the PCB.