Abstract:
An apparatus includes a processor and a memory. The memory stores instructions that when executed by the processor cause the processor to perform operations including receiving a command to perform an image capture of an image including an object. The operations further include determining a first speed threshold based on a first light condition at a first time. The operations further include determining a first speed of the object. The operations further include, in response to determining the first speed of the object exceeds the first speed threshold, determining a second speed threshold based on a second light condition detected at a second time. The operations further include determining a second speed of the object. The operations further include initiating the image capture of the image in response to determining the second speed of the object does not exceed the second speed threshold.
Abstract:
Systems, devices and methods for improved tracking with an electronic device are disclosed. The disclosures employ advanced exposure compensation and/or stabilization techniques. The tracking features may therefore be used in an electronic device to improve tracking performance under dramatically changing lighting conditions and/or when exposed to destabilizing influences, such as jitter. Historical data related to the lighting conditions and/or to the movement of a region of interest containing the tracked object are advantageously employed to improve the tracking system under such conditions.
Abstract:
Systems, devices, and methods of displaying and/or recording multiple pictures in a picture (PIP) on the same display of a digital display device are disclosed. The PIPs can show objects from the main field view of the display device, such as a front camera lens, as well as objects from a different field of view, such as a back camera lens. The PIPs can further track the objects that are being displayed.
Abstract:
Methods, systems, and apparatuses are provide to perform automatic banding correction in captured images. For example, the methods receive from a plurality of sensing elements in a sensor array, first image data captured with a first exposure parameter, and second image data captured with a second exposure parameter. The methods partition first image data and second image data and determine values for each partition. The methods compute banding errors based on the determined values of the partitions for first image data and second image data. The methods also determine a banding error correction to one or more of first image data and second image data based on the banding errors. Further, the methods perform an automatic correction of the banding errors on one or more of first image data and second image based on the banding error correction.
Abstract:
A method performed by an electronic device is described. The method includes receiving a set of images. The method also includes determining a motion region and a static region based on the set of images. The method further includes extracting, at a first rate, first features from the motion region. The method additionally includes extracting, at a second rate that is different from the first rate, second features from the static region. The method also includes caching the second features. The method further includes detecting at least one object based on at least a portion of the first features.
Abstract:
Techniques and systems are provided for generating a background picture. The background picture can be used for coding one or more pictures. For example, a method of generating a background picture includes generating a long-term background model for one or more pixels of a background picture. The long-term background model includes a statistical model for detecting long-term motion of the one or more pixels in a sequence of pictures. The method further includes generating a short-term background model for the one or more pixels of the background picture. The short-term background model detects short-term motion of the one or more pixels between two or more pictures. The method further includes determining a value for the one or more pixels of the background picture using the long-term background model and the short-term background model.
Abstract:
Systems and methods for continuous automatic focus are disclosed. In some aspects, an object to focus on is selected from a field of view of a camera. At least one region of the field of view that includes the object is monitored for change. Regions of the field of view that do not include the object may not be monitored, thus improving efficiency and speed. If a change in the image content of the monitored region(s) occurs, the method may trigger a focus event. If the object moves to different region(s) of the field of view, the method detects the movement and adjusts the regions of the image being monitored to maintain focus on the object. In some aspects, the size of the object is also monitored. If the size of the object changes, a focus event may be triggered, depending on whether the amount of change exceeds predetermined parameters.
Abstract:
Systems, devices and methods for improved tracking with an electronic device are disclosed. The disclosures employ advanced exposure compensation and/or stabilization techniques. The tracking features may therefore be used in an electronic device to improve tracking performance under dramatically changing lighting conditions and/or when exposed to destabilizing influences, such as jitter. Historical data related to the lighting conditions and/or to the movement of a region of interest containing the tracked object are advantageously employed to improve the tracking system under such conditions.