Abstract:
Techniques for determining brand information and refining a position of a mobile device are described herein. An example of a method for displaying branding information on a mobile device includes receiving a reference image feature data table based on a rough location of the mobile device, such that the reference image feature data table includes a collection of entity records and wherein each entity record includes a plurality of logo image feature fields, obtaining an image including a displayed logo, utilizing an image recognition process and the reference image feature data table on the image to determine a recognized logo, and displaying brand information based on the recognized logo.
Abstract:
An access node may enhance the upload experience by performing media processing services at the access node. The access node may receive media content from one or more client devices. The media content may include a plurality of content items. The access node may process at least a first portion of the media content to produce processed media content. Several examples of media processing services are described, including an image or audio enhancement process, discarding low quality content items, discarding redundant content items, categorizing/ranking the content items, facial recognition, and the generation of a compilation content item. After processing at least the first portion of the media content to produce processed media content, the access node may transmit the processed media content to a server.
Abstract:
Disclosed are systems, apparatus, devices, method, computer program products, and other implementations, including a method that includes capturing an image of a scene by an image capturing unit of a device that includes at least one sensor, determining relative device orientation of the device based, at least in part, on determined location of at least one vanishing point in the captured image of the scene, and performing one or more calibration operations for the at least one sensor based, at least in part, on the determined relative device orientation.
Abstract:
Embodiments disclosed obtain a plurality of measurement sets from a plurality of sensors in conjunction with the capture of a sequence of exterior and interior images of a structure while traversing locations in and around the structure. Each measurement set may be associated with at least one image. An external structural envelope of the structure is determined from exterior images of the structure and the corresponding outdoor trajectory of a UE. The position and orientation of the structure and the structural envelope is determined in absolute coordinates. Further, an indoor map of the structure in absolute coordinates may be obtained based on interior images of the structure, a structural envelope in absolute coordinates, and measurements associated with the indoor trajectory of the UE during traversal of the indoor area to capture the interior images.
Abstract:
Certain embodiments relate to systems and methods for generating a single group image from multiple captured images. A first image and a second image may be captured, the first image including a first part of a group and the second image including a second part of the group. A user interface may be provided, in some embodiments, for capture of the second image that enables a photographer to provide input regarding the relative positioning of the first and second image as well as providing input on the relative positioning of the first and second parts of the group and the image scene background. In some embodiments, a lowest energy seam line may be determined for an overlapping portion of the first and second images, and the lowest energy seam line may be used for generating a final stitched image including both the first and second parts of the group.
Abstract:
Methods, apparatuses, and devices for rendering indoor maps on a display device of, for example, a mobile device, are presented. In one example, a processor of a mobile device may receive identifiers, such as alphanumeric identifiers, for points of interest (POI) and map at least portions of the identifiers to colors within a suitable color space, such as a RGB color space.
Abstract:
Techniques for displaying navigation information on a mobile device are provided that include a method that includes obtaining an indication of a position and an indication of a direction associated with the mobile device, using the indication of the position, the indication of the direction, information regarding identities of POIs within a geographic region of interest, and information regarding areas associated with the POIs to determine at least one relevant POI, of the POIs, that is associated with the position and direction, and displaying at least one visual indication associated with each of the at least one relevant POI on the mobile device. The appearance of the at least one visual indication is dependent on at least one of a distance from the mobile device of the relevant POI associated with the visual indication or presence of a known physical barrier between the mobile device and that relevant POI.
Abstract:
Various implementations include unmanned autonomous vehicles (UAVs) and methods for providing security for a UAV. In various implementations, a processor of the UAV may receive sensor data from a plurality of UAV sensors about an object in contact with the UAV. The processor may determine an authorization threshold based on the received sensor data. The processor may determine whether the object is authorized based on the received sensor data and the determined authorization threshold.
Abstract:
Various embodiments may include methods executed by processors of computing devices for geometry based work execution prioritization. The processor may receive events, such as images. The processor may overlay a boundary shape on the event to identify discard regions of the event lying outside the boundary shape. The processor may identify work regions of the events lying within the working boundary shape. The devices may determine a cancellation likelihood for each of the identified work regions of the events. The processor may assign a trimming weight to each of the identified work regions based on the determined cancellation likelihoods. The processor may then add each of the identified work regions as a work item to an execution work list in an order based on the assigned trimming weights. The work items may be processed in order of trimming weight priority.
Abstract:
Various techniques are provided for identifying a position uncertainty of a mobile device, such as, based, at least in part, on a measure of potential hindrance of an estimated trajectory. For example, an example method may comprise estimating a trajectory of the mobile device within a particular environment, determining a measure of potential hindrance for at least a portion of the trajectory based, at least in part, on an electronic map that is indicative of a presence or an absence of one or more obstacles, and presenting an indication of a position uncertainty to a user of the mobile device. The position uncertainty may be based, at least in part, on the measure of potential hindrance.