Abstract:
An estimated location of an access point is generated based on identification of indoor and outdoor locations and the presumption that most access points are in an indoor location. The estimated location may be produced using location information for the access point and the identification of the indoor and outdoor locations while prioritizing the indoor location to produce the estimated location on or within a boundary of the indoor location. The location information may be, e.g., a preliminary estimated location or wireless signal measurements and associated position fixes for the access point. For example, a preliminary estimated location may be shifted to be on or within the nearest boundary of an indoor location or may be adjusted based on the location information. The estimated location may be calculated directly using weights to bias the calculation of the estimated location to be on or within the boundary of the indoor location.
Abstract:
Techniques for publishing location information associated with a non-geotagged transceiver are disclosed. A method for publishing a position of a non-geotagged transceiver in a wireless communication system includes determining a first position of the non-geotagged transceiver based on a periodic neighbor list, determining a second position of the non-geotagged transceiver based on an accumulated neighbor list, determining if the first position and the second position agree, publishing a third position if the first position and the second position agree, such that the third position is determined based on the union of the periodic neighbor list and the accumulated neighbor list, and resetting the accumulated neighbor list if the first and second position do not agree.
Abstract:
The disclosure is related to managing power consumption of a user equipment (UE) while providing location services. An aspect determines whether a given sensor configuration of a plurality of sensor configurations minimizes power consumption of the UE, wherein a sensor configuration comprises a set of values for a set of one or more sensor parameters controllable by the UE, and, based upon the determining, sets the set of one or more sensor parameters to the given sensor configuration.
Abstract:
Methods, systems, computer-readable media, and apparatuses for position determination are presented. In some embodiments, a method for position determination includes selecting at least one of a plurality of access points based on a measure of response time variability associated with the at least one access point. The method further includes sending, from a device, a communication to the selected at least one access point. The method also includes receiving, from the selected at least one access point, a response to the communication. The method additionally includes calculating a distance from the device to the selected at least one access point based on a round trip time associated with the response to the communication.
Abstract:
Disclosed are methods, devices, systems, apparatus, servers, media, and other implementations, including a method, performed at a first wireless device, for secure range determination that includes transmitting a first signed message at a first time instance, with the first signed message, including a first payload, configured to be received by a second wireless device at a second time instance, and receiving at a fourth time instance a verifiable acknowledgement message transmitted from the second wireless device at a third time instance in response to the first signed message. The method further includes verifying that the verifiable acknowledgement message originated from the second wireless device, and, responsive to a verification that the verifiable acknowledgement message originated from the second wireless device, transmitting a second signed message including a second payload with at least timing information for the first time instance and the fourth time instance.
Abstract:
Example methods, apparatuses, and/or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate and/or support one or more operations and/or techniques for enhancing positioning, which may include E911 positioning, via measurement batching, such as for use in or with mobile communication devices, for example.
Abstract:
In one aspect, a method performed by an access point in a wireless local area network (WLAN), includes receiving a first ranging request message from a first device and monitoring for a second ranging request message from a second device on a channel of the WLAN. The first ranging request message includes a device identifier of the first device and the second ranging request message includes a device identifier of the second device. In response to receiving the second ranging request message, the access point combines the device identifier of the first device, first timing information associated with the first ranging request message, the device identifier of the second device, and second timing information associated with the second ranging request message into a single ranging response message. The access point then broadcasts the single ranging response message on the channel of the WLAN.
Abstract:
A method of using user density includes: producing a first map portion corresponding to a first region and a second map portion corresponding to a second region, the first map portion having a first resolution and the second map portion having a second resolution, the first resolution being lower than the second resolution, at least one of the first resolution being dependent on a user density of the first region or the second resolution being dependent on a user density of the second region; and sending the first map portion and the second map portion to a destination mobile device.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or otherwise support one or more operations or techniques for use in associating (tagging) a signal observation with a location tag, such as, for example, with a mobile communication device.
Abstract:
Methods, systems, computer-readable media, and apparatuses for position determination are presented. In some embodiments, a method for position determination includes selecting at least one of a plurality of access points based on a measure of response time variability associated with the at least one access point. The method further includes sending, from a device, a communication to the selected at least one access point. The method also includes receiving, from the selected at least one access point, a response to the communication. The method additionally includes calculating a distance from the device to the selected at least one access point based on a round trip time associated with the response to the communication.