Abstract:
Techniques are provided for validating a mobile device in a passive digital key system. An example method of validating a mobile device includes determining a positioning measurement for the mobile device relative to a reference point, obtaining a measured distance with at least a first transceiver, obtaining a calibration distance based at least in part on the positioning measurement for the mobile device, computing a validation distance based at least in part on a difference between the measured distance and the calibration distance, and validating the mobile device based at least in part on a comparison of the validation distance and a threshold value.
Abstract:
This disclosure provides methods, devices and systems for radio frequency (RF) sensing in wireless communication systems. In some implementations, a transmitter device transmits sounding sequences configured for channel estimation over a wireless channel to a receiver device. The transmitter device also transmits or receives non-sounding frames associated with a channel report of the receiver device. The transmitter device transmits a frame soliciting the channel report from the receiver device. The transmitter device receives the channel report, which may include channel state information (CSI) of the wireless channel responsive to at least the sounding sequences. Some types of channel reports may take longer to generate than other types of channel reports. Transmitting or receiving the non-sounding frames during the time period may prevent other devices from accessing the wireless channel when the receiver device needs additional time to generate a certain type of channel report.
Abstract:
Various aspects for motion detection and/or gesture recognition in a wireless communication device are disclosed, and may include determining whether a source address of a received data packet is a source address of the wireless device, determining whether a process for the motion detection and/or gesture recognition is enabled in the wireless device and processing one or more received signals for the motion detection and gesture recognition occurring in a proximity of the wireless device. The one or more received signals are transmitted from a transmit antenna of the wireless device and received via a receive antenna of the wireless device. The received data packet is carried by at least one of the one or more received signals. The received data packet may be a Bluetooth data packet carrying the source address.
Abstract:
Certain aspects of the present disclosure relate to location reporting for extremely high frequency (EHF) devices. Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus generally includes a transmit interface configured to output a first frame for transmission to another apparatus at a first time, a receive interface configured to obtain, at a second time, a second frame transmitted by the other apparatus in response to the first frame, and a processing system configured to generate a third frame for transmission to the other apparatus via the transmit interface, the third frame including information indicating a difference between the first time and the second time and an indication of at least one of an angle of departure of the first frame or an angle of arrival of the second frame.
Abstract:
Disclosed are systems, methods and devices for obtaining round trip time measurements for use in location based services. In particular implementations, a fine timing measurement request message wirelessly transmitted by a first transceiver device to a second transceiver device may permit additional processing features in computing or applying a signal round trip time measurement. The fine timing measurement may include one or more files specifying a requested number of fine timing measurement messages requested for transmission from the first wireless transceiver device in response to fine timing measurement request message. Such a signal round trip time measurement may be used in positioning operations.
Abstract:
Apparatuses and methods are disclosed for performing ranging operations between a first device and a second device. The first device may receive, from the second device, a fine timing measurement (FTM) request frame including a request to estimate angle information for a number of frames exchanged with the second device and indicating a level of accuracy for the estimated angle information. The first device may transmit a first FTM frame to the second device, may receive an acknowledgement (ACK) frame from the second device, and may transmit, to the second device, a second FTM frame including angle information of the first FTM frame and timing information of one or more of the exchanged frames.
Abstract:
Techniques for estimating a position of an observing station are disclosed based on capturing, at the observing station, a first and a second FTM message exchanged between a first messaging station and a second messaging station. At the observing station, a first time of arrival of the first FTM message and a second time of arrival of the second FTM message may be determined. Based on contents of one or more FTM messages, a first transmission-related time associated with the first FTM message and a second transmission-related time associated with the second FTM message may be obtained. The position of the observing station may be estimated based on (1) a position of the first messaging station, (2) a position of the second messaging station, (3) the first time of arrival, (4) the second time of arrival, (5) the first transmission-related time, and (6) the second transmission-related time.
Abstract:
Apparatuses and methods for performing multi-channel passive ranging operations are disclosed. In one example, a passive listening device may receive, on a first wireless channel, a first exchange of signals between a first wireless device and a second wireless device, and then receive on a second wireless channel, a second exchange of signals between the first wireless device and the second wireless device, the first wireless channel different than the second wireless channel. The passive listening device may determine a differential distance between the passive listening device and the first and second wireless devices based, at least in part, on the first and second exchanges of signals on the first and second wireless channels, respectively.
Abstract:
Disclosed are systems, methods and devices for obtaining round trip time measurements for use in location based services. In particular implementations, a fine timing measurement request message wirelessly transmitted by a first transceiver device to a second transceiver device may permit additional processing features in computing or applying a signal round trip time measurement. Such a signal round trip time measurement may be used in positioning operations.
Abstract:
Methods, systems, computer-readable media, and apparatuses for determining locations of access points (AP) are presented. Techniques are described for determining relative and absolute locations of APs. In one embodiment, a device may send and receive messages to one or more APs for from various locations for determining the distance between the device and the AP. The device may additionally keep track of its own displacement for the purposes of determining the location of the one or more APs. In one embodiment, the device also determines the turnaround calibration factor (TCF) for the AP that compensates for the processing time at the AP may also be used for increasing the accuracy of the determination of the location of the AP.