Abstract:
Methods, systems, and devices for wireless communications are described. The described techniques provide for generating, by an encoding device, one or more entropy symbols, the length of which changes responsive to errors, stacking the entropy symbols into fixed intervals, and selecting a parity bit. The encoding device may divide entropy symbols that are longer than the fixed interval duration and stack the excess portions of the long entropy symbols with shorter entropy symbols in other intervals. The encoding device may transmit the slacked data packet according to the stacking. A decoding device may receive the data packet, identify the locations of the entropy symbols and the selected parity bit, check the parity of each entropy symbol, identify error bits based on the locations of the entropy symbols within multiple fixed intervals, and may correct error bits based on the stacked intervals, the parity bit, and an error mask.
Abstract:
A method performed by a wireless communication device is described. The method includes determining at least one packet type for subsequent wireless personal area network (WPAN) communication. The method also includes determining at least one receive diversity setting based on the at least one packet type. The method further includes receiving at least one packet based on the at least one receive diversity setting.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may transmit a LMP version request PDU to a second device. The apparatus may receive a LMP version response PDU including at least one of a link layer identification, a version number, or a sub-version number associated with the second device. The apparatus may determine if one or more of the link layer identification, the version number, or the sub-version number included in the LMP version response PDU are associated with a recognized QLM. The apparatus may a first LMP encapsulated header PDU that includes a first QLMP feature request opcode to the second device when it is determined that one or more of the link layer identification, the version number, or the sub-version number included in the LMP version response PDU are associated with the recognized QLM.
Abstract:
A method is described. The method includes receiving an event monitoring model generated by a machine learning engine. The event monitoring model is configured to classify network device behavior based on observed events. The method also includes monitoring events in a network based on the event monitoring model. Machine learning features are extracted from network traffic generated by one or more network devices. The method further includes determining a network device classification of the monitored events based on the event monitoring model. The method additionally includes sending the observed events and the network device classification to the machine learning engine to update the event monitoring model.
Abstract:
Methods, systems and devices for locating a wireless identity transmitter with a central server connected with one or more proximity broadcast receivers, such as stationary receivers or mobile devices operating as wireless receivers. The wireless identity transmitter may be a compact device configured to broadcast messages, such as through Bluetooth® advertisements, including an identification code. When within proximity, a proximity broadcast receiver may receive broadcast messages from the wireless identity transmitter and relay location information along with the wireless identity transmitter's identification code to a central server as sighting messages. The proximity broadcast receiver's own location may provide an approximate location for the wireless identity transmitter. The central server may process sighting messages, which may include signal strength information, to accurately locate the wireless identity transmitter. The central server may transmit data to third-party devices and/or mobile devices of users in response to receiving sightings messages.
Abstract:
A wireless communication device comprises a first wireless interface configured to communicate with a device over a first wireless network, and a second wireless interface configured to communicate with a remote server over a second wireless network, the remote server storing one or more executables. The wireless communication device includes a configured to receive device configuration information from the device over the first wireless network, the device configuration information identifying at least processing hardware resources in the device. The controller is configured to select an executable based on the device configuration information, the executable for configuring the device to process data in a particular format and determine whether the selected executable is stored within the wireless communication device, and if not, to retrieve the selected executable from the remote server by way of the second wireless network, and download the selected executable to the device over the first wireless network.
Abstract:
A device includes a memory configured to store instructions and one or more processors configured to execute the instructions. The one or more processors are configured to execute the instructions to obtain link data corresponding to a communication link to a second device. The one or more processors are configured to execute the instructions to select, at least partially based on the link data, between an ambisonics mode and a stereo mode.
Abstract:
A first device may establish, with a second device, a logical link associated with short-range communications. The first device may receive a first packet carried on the logical link. When the first PDU data fails the decoding check, the first device may determine, based on the logical link, a first operational mode from a plurality of operational modes for error correction, the first device may receive a set of retransmission packets on the logical link, each of the set of retransmission packets including respective PDU data that is a retransmission of the first PDU data, and the first device may apply, based on the first PDU data included in the first packet and the respective PDU data included in each of the set of retransmission packets, the first operational mode for error correction.
Abstract:
In an embodiment, a user equipment (UE) is configured to operate in accordance with different wireless personal area network (WPAN) radio access technologies (RATs). The UE prioritizes a plurality of WPAN RATs supported by the UE, and dynamically allocates a plurality of shared WPAN radios to the plurality of WPAN RATs based on the prioritization.
Abstract:
Embodiments determine that interference between two radio transmissions is causing, or has the potential to cause, a network device to fail to receive acknowledgement packets. In response to such a determination, the embodiments lower an acknowledgement packet transmission bit rate to increase the likelihood that an acknowledgement packet can be successfully received, thereby avoiding needless retransmission of packets that have been successfully received.