Abstract:
Apparatus, methods, and computer-readable media for facilitating multi-tasking and smart location selection during connected-mode discontinuous reception (CDRX) mode are disclosed herein. Example techniques disclosed herein enable a UE to perform multiple tasks during a same SSBS to reduce the number of wake-up SSBSs. For example, disclosed techniques enable a UE to perform RLM tasks and loop tracking tasks during a first SSBS and thereby reduce the number of wake-up SSBSs. In some examples, the UE may also perform the search task or the measurement task during the same first SSBS and, thereby, further reduce the number of wake-up SSBSs. Example techniques disclosed herein may also enable the UE to select which SSBS occurrences to wake-up for during the OFF duration of the CDRX cycle.
Abstract:
Methods and devices are disclosed for enabling improved performance on a single-transmit multi-SIM wireless communication device. The wireless communication device may detect a voice communication on a modem stack associated with the first SIM and a data communication on a modem stack associated with the second SIM. The wireless communication device may identify a data rate used by the voice codec to encode uplink traffic channel (TCH) bursts in the voice communication, and determine whether the identified data rate used by the voice codec permits TCH burst cancellation. If it is determined that the identified data rate used by the voice codec permits TCH burst cancellation, the wireless communication device may downgrade a portion of the uplink TCH bursts scheduled on the modem stack associated with the first SIM.
Abstract:
Devices and methods are configured for resolving control channel transmission collision in a mobile device having first and second subscriptions (SUBs) when the first SUB is in an active voice call and the second SUB is in a held voice call. The devices and methods involve determining whether a control channel transmission of the first SUB would collide with a control channel transmission of the second SUB. In response to determining that the first SUB control channel transmission would collide with the second SUB control channel transmission, the devices and methods alternate the first SUB control channel transmission and the second SUB control channel transmission to avoid collision.
Abstract:
Methods and devices are disclosed for enabling improved transmission performance on a multi-SIM wireless communication device. The wireless device may detect a voice communication in a held state on a modem stack associated with the first SIM and an active voice communication on a modem stack associated with the second SIM. The wireless device may detect a conflict between at least one silence descriptor (SID) frame scheduled for transmission by the modem stack associated with the first SIM and a transmit opportunity for the modem stack associated with the second SIM. Once the wireless device identifies a SID frame transmission rate for the modem stack associated with the first SIM, the wireless device may apply a reduction scheme to the SID frames scheduled to be transmitted by the modem stack associated with the first SIM.
Abstract:
Systems and methods for antenna switching without using a radio-frequency switch are provided. A signal received via a first antenna is digitized to form a first digital received signal. A signal received via a second antenna is digitized to form a second digital received signal. A switch selects the first digital received signal or the second digital received signal to be supplied to a modem to be demodulated. The switch may also supply a digital transmit signal from the modem to be supplied to digital-to-analog converters to and then transmitted using the first or second antenna. Additionally, when the modem is demodulating the signal received via the first antenna, another modem may be demodulating the signal received via the second antenna and vice versa.
Abstract:
Access terminals are adapted to blacklist one or more neighboring cells from acquisition attempts. For instance, an access terminal may receive a transmission including a list of neighboring cells to be monitored while connected to a particular serving cell. The access terminal may determine that a predefined number of consecutive acquisition attempts with a particular neighboring cell have failed. In response to failure of the predefined number of consecutive acquisition attempts, the access terminal can blacklist the neighboring cell from subsequent acquisition attempts for a predefined blacklisting period. Following the duration of the blacklisting period, the access terminal may conduct a subsequent acquisition attempt with the neighboring cell. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods, systems, and devices for wireless communication are described related to a duty cycle configuration for power saving. A user equipment (UE) may receive control signaling indicating a duty cycle for cycling between a first power state associated with a first configuration and a second power state associated with a second configuration. In some examples, the first and second configurations may indicate a bandwidth part (BWP) configuration, restricted reception or transmission of one or more channels within the BWP configuration, or both for the UE. The UE may communicate first data traffic in accordance with the first configuration while operating in the first power state. The UE may transition from the first power state to the second power state in accordance with the duty cycle. The UE may communicate second data traffic in accordance with the second configuration while operating in the second power state.
Abstract:
Examples described herein relate to enhancing data communication performance in a wireless communication network including a first subscription associated with a first radio access technology (RAT) and a second subscription associated with a second RAT, where the wireless communication device uses a same radio frequency (RF) resource to communicate over both the first RAT and the second RAT. The first RAT is used, in part, for data operations while the second RAT is used, in part, for voice operations. During idle state voice operations, the RF resource is reallocated from performing data operations to performing idle state voice operations, causing interruptions in the data operations. The wireless communication device adjusts at least one or a duration and an occurrence of the idle state voice operations to reduce the impact on the data operations.
Abstract:
Various embodiments implemented on a multi-subscription-capable communication device (e.g., a mobile communication device capable of supporting more than one wireless subscription) enable a data connection for a blanked subscription to be kept alive during transmit (Tx) blanking by ensuring at least one Packet Data Traffic Channel (PDTCH) transmission is sent to the network before the network's counter for PDTCH transmissions expires.
Abstract:
Methods and devices are disclosed for enabling improved performance on a single-transmit multi-SIM wireless communication device. The wireless communication device may detect a voice communication on a modem stack associated with the first SIM and a data communication on a modem stack associated with the second SIM. The wireless communication device may identify a data rate used by the voice codec to encode uplink traffic channel (TCH) bursts in the voice communication, and determine whether the identified data rate used by the voice codec permits TCH burst cancellation. If it is determined that the identified data rate used by the voice codec permits TCH burst cancellation, the wireless communication device may downgrade a portion of the uplink TCH bursts scheduled on the modem stack associated with the first SIM.