Abstract:
A method of processing a satellite signal includes: receiving a satellite positioning system (SPS) signal, including an SPS data signal of unknown data content, from a satellite at a wireless communication device; receiving symbol indications, of determined symbol values, from a terrestrial wireless communication system at the wireless communication device; correlating the SPS data signal with a pseudo-random noise code to obtain first correlation results; and using the symbol indications and the first correlation results to determine a measurement of the SPS signal.
Abstract:
Methods and systems are disclosed for improving reliability in mobile device positioning. A mobile device generates position data for a device, receives a first access point position reliability state associated with the first access point, determines a reliability of the position data based on the first access point position reliability state and an estimated location of the first access point, determines a threshold reliability requirement of an application associated with the mobile device, compares the reliability of the position data to the threshold reliability requirement of the application, and provides the position data of the device based on the comparison. A network entity determines access point characteristics associated with an access point, generates a position reliability state for the access point, sends the position reliability state to a mobile device, receives position data associated with the mobile device, and determines a trustworthiness of the position data.
Abstract:
A method of organizing positioning assistance data includes: determining that first access points are more likely to be used for determining a position of a mobile device than second access points, the first and second access points being members of a master group of access points, at least the first access points being access points from each of which at least one signal has been received by the mobile device; storing first sets of positioning assistance data, associated with the first access points, in a first cache; and storing second sets of positioning assistance data, associated with the second access points, in a second cache; where the first cache has a quicker access rate than the second cache.
Abstract:
Techniques for determining a position of a mobile device are provided. An example of these techniques is a method that includes performing a passive scan for wireless transceivers proximate to the mobile device to generate passive scan results, generating a first wireless transceiver list, comprising a first set of wireless transceivers, transmitting a request to at least one wireless transceiver from the first wireless transceiver list requesting that the at least one wireless transceiver perform a scan, generating a second wireless transceiver list comprising identifying information for a second set of wireless transceivers, proximate to the at least one wireless transceiver, measuring signals received from wireless transceivers selected from at least one of the first wireless transceiver list and the second wireless transceiver list, and determining the position of the mobile device based at least in part on the signals measured.
Abstract:
Method, device, and computer program product that may improve communications between a mobile device and an access point device are disclosed. In one embodiment, a method of communicating between a mobile device and an access point device comprises control a plurality of beacons in the access point device, establishing a communication between the access point device with the mobile device using a first beacon in the plurality of beacons, broadcasting availability of the plurality of beacons in the access point device via the first beacon, and establishing the communication with the mobile device using a second beacon in the plurality of beacons.
Abstract:
Disclosed are systems, apparatus, devices, methods, computer program products, and other implementations, including a method that includes receiving signals at a mobile device from one or more access points, computing one or more positioning quality parameters by analyzing the received signals, and determining based, at least in part, on the computed one or more positioning quality parameters whether the mobile device is inside at least one of one or more areas respectively associated with the one or more access points.
Abstract:
Aspects presented herein may enable a UE to identify whether images captured by the camera(s) of the UE are spoofed (e.g., are real images or false/manipulated/virtual images, etc.). In one aspect, a UE obtains a set of images associated with a vision-aided positioning session, where the set of images is captured using at least one first camera. The UE detects that at least one spoofing feature is present in the set of images during the vision-aided positioning session. The UE stores or outputs an indication of the at least one spoofing feature based on the at least one spoofing feature being present in the set of images. The UE performs the camera-aided positioning session based on at least one non-spoofing feature, where the at least one non-spoofing feature is different from the at least one spoofing feature.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses in a vehicle to determine location relative to a roadside unit (RSU) or other nearby point of reference. Vehicles within a pre-designated range or within broadcast distance or otherwise geographically proximate to a roadside unit, through the use of broadcast or other messages sent by the vehicles and/or the RSU may share carrier GNSS phase measurement data, wherein the shared GNSS carrier phase measurement data may be utilized to control and coordinate vehicle movements, velocity and/or position by the RSU and/or to determine location of each vehicle relative to the RSU and/or to other vehicles or determine the absolute location of each vehicle. An RSU may coordinate vehicle access to an intersection, manage vehicle speeds and coordinate or control vehicle actions such as slowing, stopping, and changing lanes or sending a vehicle to a particular location.
Abstract:
Techniques for Ultra Wide-Lane (UWL) Real-Time Kinematic (RTK) positioning a mobile device may include obtaining, using a multi-band GNSS receiver of the mobile device: a first carrier-phase measurement of a first GNSS signal on a first GNSS carrier frequency, and a second carrier-phase measurement of a second GNSS signal on second GNSS carrier frequency. Techniques may further comprise providing a position estimate of the mobile device, wherein: the position estimate is determined from a wide-lane (WL) combination of the first carrier-phase measurement and the second carrier-phase measurement, and the WL combination has a combined carrier phase noise that is less than a pseudo-range noise of the first carrier-phase measurement and a pseudo-range noise of the second carrier-phase measurement.
Abstract:
A mobile device may be configured to improve measurement of carrier phase (CP) in received satellite signals for satellite positioning system (SPS) operations. For example, this may enable an SPS receiver to measure CP of at least a first positioning signal and a second positioning signal each received from the same satellite vehicle. A corrected CP of the first positioning signal may be estimated based on the measured CP of the first positioning signal and on the measured CP of the second positioning signal.