Abstract:
The invention provides a semiconductor structure. The semiconductor structure includes a substrate. A first passivation layer is disposed on the substrate. A conductive pad is disposed on the first passivation layer. A second passivation layer is disposed on the first passivation layer. A conductive structure is disposed on the conductive pad, and a passive device is also disposed on the conductive pad, wherein the passive device has a first portion located above the second passivation layer and a second portion passing through the second passivation layer. A solderability preservative film covers the first portion of the passive device, and an under bump metallurgy (UBM) layer covers the second portion of the passive device and a portion of the conductive structure.
Abstract:
A semiconductor device comprising a substrate is disclosed. The substrate comprises: a well of type one; a first doped region of type two, provided in the well of type one; a well of type two, adjacent to the well of type one; a first doped region of type one, doped in the well of type two; and a second doped region of type two, provided in the well of type one and the well of type two, not touching the first doped region of type two. The substrate comprises no isolating material provided in a current path formed by the first doped region of type two, the well of type one, the well of type two and the first doped region of type one.
Abstract:
An implementation of the invention is directed to a passive device cell having a substrate layer, and intermediary layer formed above the substrate layer, and a passive device formed above the intermediary layer. The intermediary layer includes a plurality of LC resonators and a plurality of segmented conductive lines, wherein the plurality of segmented conductive lines are disposed between the plurality of LC resonators.
Abstract:
A semiconductor device comprising a substrate is disclosed. The substrate comprises: a well of type one; a first doped region of type two, provided in the well of type one; a well of type two, adjacent to the well of type one; a first doped region of type one, doped in the well of type two; and a second doped region of type two, provided in the well of type one and the well of type two, not touching the first doped region of type two. The substrate comprises no isolating material provided in a current path formed by the first doped region of type two, the well of type one, the well of type two and the first doped region of type one.
Abstract:
A method for controlling an electrical property of a passive device during a fabrication of an integrated component includes providing a substrate, manufacturing the passive device on the substrate, measuring the electrical property of the passive device to obtain a measuring result, determining at least one layout pattern corresponding to at least one later manufacturing process by the measuring result for adjusting the electrical property of the passive device, and continuing the rest of the fabrication including the at least one later manufacturing process of the integrated component.