Abstract:
A repeater (200) facilitates wireless communication between a first communication device (100) and a second communication device (105) in a wireless network using a time division duplex protocol for data transmission. The repeater (200) includes a receiver (310, 315) for receiving a signal on either of at least two bi-directional communication frequencies simultaneously. A signal detector (362) is operatively coupled to the receiver (300, 310, 315) for determining if the signal is present on at least one of the two bi-directional frequencies. A frequency converter (320, 321, 323, 324, 360, 361) is for converting the signal present on one of the bi-directional frequencies to a converted signal on the other of the bi-directional frequencies. A transmitter (300, 325, 330, 335, 345, 350) is for transmitting the converted signal on the other of said bi-directional frequencies.
Abstract:
Methods and systems are provided to generate digital coefficients for a filter. The generation of coefficients relies on a Fourier transformation of an impulse response in time domain that is zero padded, e.g., zeros are appended to an array corresponding to a sampled input signal of length M. A unit prototypical filter is generated through a frequency domain response of length NFFT=NS+M−1, wherein NS is a sampling length of the incoming signal. The unit prototypical filter is then circularly shifted in order to generate a band pass filter centered at a desired frequency. Circularly shifted filters are point-to-point added to generate a set of composite digital coefficients to filter the incoming signal. The reference frequencies for the composite filter are extracted from a message received from one or more base stations associated with one or more service providers. The composite filter typically operates on a frequency repeater.
Abstract translation:提供方法和系统以产生用于滤波器的数字系数。 系数的产生依赖于零填充的时域中的脉冲响应的傅立叶变换,例如,零被附加到与长度为M的采样输入信号相对应的阵列上。通过频域响应产生单元原型滤波器 的长度N< N> = N S + M-1,其中N S S是输入信号的采样长度。 然后将单元原型滤波器循环移位,以便产生以期望频率为中心的带通滤波器。 循环移位滤波器是点对点相加以产生一组复合数字系数来滤波输入信号。 从与一个或多个服务提供商相关联的一个或多个基站接收的消息中提取复合滤波器的参考频率。 复合滤波器通常在频率转发器上运行。
Abstract:
A method for synchronizing a CDMA receiver to a transmitter when an adaptive antenna is utilized to receive transmitted data, wherein a receiving antenna system is adapted between a 360° reception angle pattern (i.e., an omni-directional pattern) and a fixed reception angle (i.e., a directional pattern) by permitting the receiver to identify a pilot signal having the largest magnitude. The receiver minimizes interference from other pilot signals by steering antenna pattern nulls toward other transmitters. As a result, the time required for the receiver to acquire a valid pilot signal is significantly reduced.
Abstract:
A repeater environment is provided operative to deploy a feedback cancellation loop that is adaptively coupled with an antenna array such that a selected metric can be derived by deploying a selected filter bank having an automatic gain control operative to process the signal on a bin by bin basis and the derived metric can be applied to the antenna array and feedback cancellation loop combination to improve signal integrity and amplification. In an illustrative implementation, an exemplary repeater environment comprises, a transmitter, a receiver, an equalized feedback cancellation loop circuitry comprising a filter bank, the cancellation loop being operatively coupled to an antenna array. In the illustrative implementation, the feedback cancellation loop can receive signals as input from a cooperating antenna array and provide output signals such as a feedback leakage signal to a cooperating antenna array.
Abstract:
A technique for providing high speed data service over standard wireless connections via an unique integration of protocols and existing cellular signaling, such as is available with Code Division Multiple Access (CDMA) type systems through more efficient allocation of access to CDMA channels. For example, when more users exist than channels, the invention determines a set of probabilities for which users will require channel access at which times, and dynamically assigns channel resources accordingly. Channel resources are allocated according to a buffer monitoring scheme provided on forward and reverse links between a base station and multiple subscriber units. Each buffer is monitored over time for threshold levels of data to be transmitted in that buffer. For each buffer, a probability is calculated that indicates how often the specific buffer will need to transmit data and how much data will be transmitted. This probability takes into account the arrival rates of data into the buffer, as well as which thresholds within the buffer are exceeded, as well as which resources in the form of channels are already allocated to the subscriber unit.
Abstract:
A digitally implemented, look-up table-based, predistortion and feed-forward correction signal processing mechanism compensates for distortion generated in the RF power amplifier. The input signal to the RF amplifier is stored for comparison with the measured the RF output. In each of predistortion and feed-forward signal processing paths, the magnitude of the complex waveform of the input signal is extracted to derive a read-out address to a dual-port RAM which stores weights to be multiplied by the input signal. In the predistortion signal processing path, the product is coupled to the RF power amplifier. In the feed-forward correction loop, the product is amplified by an auxiliary feed-forward RF amplifier and coupled into the amplified output signal path of the RF power amplifier.